
TCP/IP Internetworking With gawk

Edition 1.1
April, 2002

Jürgen Kahrs
with Arnold D. Robbins

Published by:

Free Software Foundation
59 Temple Place — Suite 330
Boston, MA 02111-1307 USA
Phone: +1-617-542-5942
Fax: +1-617-542-2652
Email: gnu@gnu.org
URL: http://www.gnu.org/

ISBN 1-882114-93-0

This is Edition 1.1 of TCP/IP Internetworking With gawk, for the 3.1.1 (or later) version
of the GNU implementation of AWK.

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.
a. “A GNU Manual”
b. “You have freedom to copy and modify this GNU Manual, like GNU software. Copies

published by the Free Software Foundation raise funds for GNU development.”

i

Table of Contents

Preface . 1

1 Networking Concepts . 3
1.1 Reliable Byte-streams (Phone Calls) . 3
1.2 Best-effort Datagrams (Mailed Letters) 3
1.3 The Internet Protocols . 4

1.3.1 The Basic Internet Protocols . 4
1.3.2 TCP and UDP Ports. 4

1.4 Making TCP/IP Connections (And Some Terminology) 5

2 Networking With gawk . 7
2.1 gawk’s Networking Mechanisms . 7

2.1.1 The Fields of the Special File Name 8
2.1.2 Comparing Protocols. 9

2.1.2.1 ‘/inet/tcp’ . 9
2.1.2.2 ‘/inet/udp’ . 10
2.1.2.3 ‘/inet/raw’ . 11

2.2 Establishing a TCP Connection . 12
2.3 Troubleshooting Connection Problems 13
2.4 Interacting with a Network Service . 14
2.5 Setting Up a Service . 15
2.6 Reading Email . 16
2.7 Reading a Web Page . 17
2.8 A Primitive Web Service . 18
2.9 A Web Service with Interaction . 19

2.9.1 A Simple CGI Library . 22
2.10 A Simple Web Server . 26
2.11 Network Programming Caveats . 29
2.12 Where To Go From Here . 29

3 Some Applications and Techniques 33
3.1 PANIC: An Emergency Web Server . 33
3.2 GETURL: Retrieving Web Pages . 34
3.3 REMCONF: Remote Configuration of Embedded Systems

. 35
3.4 URLCHK: Look for Changed Web Pages 37
3.5 WEBGRAB: Extract Links from a Page 38
3.6 STATIST: Graphing a Statistical Distribution 40
3.7 MAZE: Walking Through a Maze In Virtual Reality 44
3.8 MOBAGWHO: a Simple Mobile Agent. 46
3.9 STOXPRED: Stock Market Prediction As A Service 51
3.10 PROTBASE: Searching Through A Protein Database 57

ii TCP/IP Internetworking With gawk

4 Related Links . 61

GNU Free Documentation License 65
ADDENDUM: How to use this License for your documents 70

Index . 71

Preface 1

Preface

In May of 1997, Jürgen Kahrs felt the need for network access from awk, and, with a
little help from me, set about adding features to do this for gawk. At that time, he wrote
the bulk of this book.

The code and documentation were added to the gawk 3.1 development tree, and lan-
guished somewhat until I could finally get down to some serious work on that version of
gawk. This finally happened in the middle of 2000.

Meantime, Jürgen wrote an article about the Internet special files and ‘|&’ operator for
Linux Journal, and made a networking patch for the production versions of gawk available
from his home page. In August of 2000 (for gawk 3.0.6), this patch also made it to the main
GNU ftp distribution site.

For release with gawk, I edited Jürgen’s prose for English grammar and style, as he is
not a native English speaker. I also rearranged the material somewhat for what I felt was
a better order of presentation, and (re)wrote some of the introductory material.

The majority of this document and the code are his work, and the high quality and
interesting ideas speak for themselves. It is my hope that these features will be of significant
value to the awk community.

Arnold Robbins
Nof Ayalon, ISRAEL
March, 2001

2 TCP/IP Internetworking With gawk

Chapter 1: Networking Concepts 3

1 Networking Concepts

This chapter provides a (necessarily) brief intoduction to computer networking concepts.
For many applications of gawk to TCP/IP networking, we hope that this is enough. For
more advanced tasks, you will need deeper background, and it may be necessary to switch
to lower-level programming in C or C++.

There are two real-life models for the way computers send messages to each other over
a network. While the analogies are not perfect, they are close enough to convey the major
concepts. These two models are the phone system (reliable byte-stream communications),
and the postal system (best-effort datagrams).

1.1 Reliable Byte-streams (Phone Calls)

When you make a phone call, the following steps occur:
1. You dial a number.
2. The phone system connects to the called party, telling them there is an incoming call.

(Their phone rings.)
3. The other party answers the call, or, in the case of a computer network, refuses to

answer the call.
4. Assuming the other party answers, the connection between you is now a duplex (two-

way), reliable (no data lost), sequenced (data comes out in the order sent) data stream.
5. You and your friend may now talk freely, with the phone system moving the data

(your voices) from one end to the other. From your point of view, you have a direct
end-to-end connection with the person on the other end.

The same steps occur in a duplex reliable computer networking connection. There is
considerably more overhead in setting up the communications, but once it’s done, data
moves in both directions, reliably, in sequence.

1.2 Best-effort Datagrams (Mailed Letters)

Suppose you mail three different documents to your office on the other side of the country
on two different days. Doing so entails the following.
1. Each document travels in its own envelope.
2. Each envelope contains both the sender and the recipient address.
3. Each envelope may travel a different route to its destination.
4. The envelopes may arrive in a different order from the one in which they were sent.
5. One or more may get lost in the mail. (Although, fortunately, this does not occur very

often.)
6. In a computer network, one or more packets may also arrive multiple times. (This

doesn’t happen with the postal system!)

The important characteristics of datagram communications, like those of the postal
system are thus:
• Delivery is “best effort;” the data may never get there.

4 TCP/IP Internetworking With gawk

• Each message is self-contained, including the source and destination addresses.
• Delivery is not sequenced; packets may arrive out of order, and/or multiple times.
• Unlike the phone system, overhead is considerably lower. It is not necessary to set up

the call first.

The price the user pays for the lower overhead of datagram communications is exactly
the lower reliability; it is often necessary for user-level protocols that use datagram com-
munications to add their own reliabilty features on top of the basic communications.

1.3 The Internet Protocols

The Internet Protocol Suite (usually referred as just TCP/IP)1 consists of a number of
different protocols at different levels or “layers.” For our purposes, three protocols provide
the fundamental communications mechanisms. All other defined protocols are referred to
as user-level protocols (e.g., HTTP, used later in this book).

1.3.1 The Basic Internet Protocols

IP The Internet Protocol. This protocol is almost never used directly by applica-
tions. It provides the basic packet delivery and routing infrastructure of the
Internet. Much like the phone company’s switching centers or the Post Office’s
trucks, it is not of much day-to-day interest to the regular user (or programmer).
It happens to be a best effort datagram protocol.

UDP The User Datagram Protocol. This is a best effort datagram protocol. It
provides a small amount of extra reliability over IP, and adds the notion of
ports, described in Section 1.3.2 [TCP and UDP Ports], page 4.

TCP The Transmission Control Protocol. This is a duplex, reliable, sequenced byte-
stream protocol, again layered on top of IP, and also providing the notion of
ports. This is the protocol that you will most likely use when using gawk for
network programming.

All other user-level protocols use either TCP or UDP to do their basic communications.
Examples are SMTP (Simple Mail Transfer Protocol), FTP (File Transfer Protocol) and
HTTP (HyperText Transfer Protocol).

1.3.2 TCP and UDP Ports

In the postal system, the address on an envelope indicates a physical location, such as a
residence or office building. But there may be more than one person at the location; thus
you have to further quantify the recipient by putting a person or company name on the
envelope.

In the phone system, one phone number may represent an entire company, in which case
you need a person’s extension number in order to reach that individual directly. Or, when
you call a home, you have to say, “May I please speak to ...” before talking to the person
directly.

1 It should be noted that although the Internet seems to have conquered the world, there are other
networking protocol suites in existence and in use.

Chapter 1: Networking Concepts 5

IP networking provides the concept of addressing. An IP address represents a particular
computer, but no more. In order to reach the mail service on a system, or the FTP or
WWW service on a system, you have to have some way to further specify which service you
want. In the Internet Protocol suite, this is done with port numbers, which represent the
services, much like an extension number used with a phone number.

Port numbers are 16-bit integers. Unix and Unix-like systems reserve ports below 1024
for “well known” services, such as SMTP, FTP, and HTTP. Numbers above 1024 may be
used by any application, although there is no promise made that a particular port number
is always available.

1.4 Making TCP/IP Connections (And Some Terminology)

Two terms come up repeatedly when discussing networking: client and server. For now,
we’ll discuss these terms at the connection level, when first establishing connections between
two processes on different systems over a network. (Once the connection is established, the
higher level, or application level protocols, such as HTTP or FTP, determine who is the
client and who is the server. Often, it turns out that the client and server are the same in
both roles.)

The server is the system providing the service, such as the web server or email server.
It is the host (system) which is connected to in a transaction. For this to work though, the
server must be expecting connections. Much as there has to be someone at the office building
to answer the phone2, the server process (usually) has to be started first and waiting for a
connection.

The client is the system requesting the service. It is the system initiating the connection
in a transaction. (Just as when you pick up the phone to call an office or store.)

In the TCP/IP framework, each end of a connection is represented by a pair of (address,
port) pairs. For the duration of the connection, the ports in use at each end are unique,
and cannot be used simultaneously by other processes on the same system. (Only after
closing a connection can a new one be built up on the same port. This is contrary to the
usual behavior of fully developed web servers which have to avoid situations in which they
are not reachable. We have to pay this price in order to enjoy the benefits of a simple
communication paradigm in gawk.)

Furthermore, once the connection is established, communications are synchronous. I.e.,
each end waits on the other to finish transmitting, before replying. This is much like two
people in a phone conversation. While both could talk simultaneously, doing so usually
doesn’t work too well.

In the case of TCP, the synchronicity is enforced by the protocol when sending data.
Data writes block until the data have been received on the other end. For both TCP and
UDP, data reads block until there is incoming data waiting to be read. This is summarized
in the following table, where an “X” indicates that the given action blocks.

2 In the days before voice mail systems!

6 TCP/IP Internetworking With gawk

Protocol Reads Writes
TCP X X
UDP X
RAW X

Chapter 2: Networking With gawk 7

2 Networking With gawk

The awk programming language was originally developed as a pattern-matching lan-
guage for writing short programs to perform data manipulation tasks. awk’s strength is
the manipulation of textual data that is stored in files. It was never meant to be used
for networking purposes. To exploit its features in a networking context, it’s necessary to
use an access mode for network connections that resembles the access of files as closely as
possible.

awk is also meant to be a prototyping language. It is used to demonstrate feasibility and
to play with features and user interfaces. This can be done with file-like handling of network
connections. gawk trades the lack of many of the advanced features of the TCP/IP family
of protocols for the convenience of simple connection handling. The advanced features are
available when programming in C or Perl. In fact, the network programming in this chapter
is very similar to what is described in books such as Internet Programming with Python,
Advanced Perl Programming, or Web Client Programming with Perl.

However, you can do the programming here without first having to learn object-oriented
ideology; underlying languages such as Tcl/Tk, Perl, Python; or all of the libraries necessary
to extend these languages before they are ready for the Internet.

This chapter demonstrates how to use the TCP protocol. The other protocols are much
less important for most users (UDP) or even untractable (RAW).

2.1 gawk’s Networking Mechanisms

The ‘|&’ operator introduced in gawk 3.1 for use in communicating with a coprocess is
described in section “Two-way Communications With Another Process” in GAWK: Effec-
tive AWK Programming. It shows how to do two-way I/O to a separate process, sending it
data with print or printf and reading data with getline. If you haven’t read it already,
you should detour there to do so.

gawk transparently extends the two-way I/O mechanism to simple networking through
the use of special file names. When a “coprocess” that matches the special files we are
about to describe is started, gawk creates the appropriate network connection, and then
two-way I/O proceeds as usual.

At the C, C++, and Perl level, networking is accomplished via sockets, an Application
Programming Interface (API) originally developed at the University of California at Berke-
ley that is now used almost universally for TCP/IP networking. Socket level programming,
while fairly straightforward, requires paying attention to a number of details, as well as
using binary data. It is not well-suited for use from a high-level language like awk. The
special files provided in gawk hide the details from the programmer, making things much
simpler and easier to use.

The special file name for network access is made up of several fields, all of which are
mandatory:

/inet/protocol/localport/hostname/remoteport

The ‘/inet/’ field is, of course, constant when accessing the network. The localport and
remoteport fields do not have a meaning when used with ‘/inet/raw’ because “ports” only
apply to TCP and UDP. So, when using ‘/inet/raw’, the port fields always have to be ‘0’.

8 TCP/IP Internetworking With gawk

2.1.1 The Fields of the Special File Name

This section explains the meaning of all the other fields, as well as the range of values
and the defaults. All of the fields are mandatory. To let the system pick a value, or if the
field doesn’t apply to the protocol, specify it as ‘0’:

protocol Determines which member of the TCP/IP family of protocols is selected to
transport the data across the network. There are three possible values (always
written in lowercase): ‘tcp’, ‘udp’, and ‘raw’. The exact meaning of each is
explained later in this section.

localport Determines which port on the local machine is used to communicate across
the network. It has no meaning with ‘/inet/raw’ and must therefore be ‘0’.
Application-level clients usually use ‘0’ to indicate they do not care which local
port is used—instead they specify a remote port to connect to. It is vital for
application-level servers to use a number different from ‘0’ here because their
service has to be available at a specific publicly known port number. It is
possible to use a name from ‘/etc/services’ here.

hostname Determines which remote host is to be at the other end of the connection.
Application-level servers must fill this field with a ‘0’ to indicate their being
open for all other hosts to connect to them and enforce connection level server
behavior this way. It is not possible for an application-level server to restrict its
availability to one remote host by entering a host name here. Application-level
clients must enter a name different from ‘0’. The name can be either symbolic
(e.g., ‘jpl-devvax.jpl.nasa.gov’) or numeric (e.g., ‘128.149.1.143’).

remoteport
Determines which port on the remote machine is used to communicate across
the network. It has no meaning with ‘/inet/raw’ and must therefore be 0.
For ‘/inet/tcp’ and ‘/inet/udp’, application-level clients must use a number
other than ‘0’ to indicate to which port on the remote machine they want to
connect. Application-level servers must not fill this field with a ‘0’. Instead
they specify a local port to which clients connect. It is possible to use a name
from ‘/etc/services’ here.

Experts in network programming will notice that the usual client/server asymmetry
found at the level of the socket API is not visible here. This is for the sake of simplicity
of the high-level concept. If this asymmetry is necessary for your application, use another
language. For gawk, it is more important to enable users to write a client program with a
minimum of code. What happens when first accessing a network connection is seen in the
following pseudocode:

if ((name of remote host given) && (other side accepts connection)) {
rendez-vous successful; transmit with getline or print

} else {
if ((other side did not accept) && (localport == 0))
exit unsuccessful

if (TCP) {
set up a server accepting connections

Chapter 2: Networking With gawk 9

this means waiting for the client on the other side to connect
} else
ready

}

The exact behavior of this algorithm depends on the values of the fields of the special
file name. When in doubt, the following table gives you the combinations of values and
their meaning. If this table is too complicated, focus on the three lines printed in bold. All
the examples in Chapter 2 [Networking With gawk], page 7, use only the patterns printed
in bold letters.

protocol local
port

host
name

remote
port

Resulting connection-
level behavior

tcp 0 x x Dedicated client, fails if im-
mediately connecting to a
server on the other side fails

udp 0 x x Dedicated client
raw 0 x 0 Dedicated client, works only

as root
tcp, udp x x x Client, switches to dedicated

server if necessary

tcp, udp x 0 0 Dedicated server
raw 0 0 0 Dedicated server, works only

as root
tcp, udp, raw x x 0 Invalid
tcp, udp, raw 0 0 x Invalid
tcp, udp, raw x 0 x Invalid
tcp, udp 0 0 0 Invalid
tcp, udp 0 x 0 Invalid
raw x 0 0 Invalid
raw 0 x x Invalid
raw x x x Invalid

In general, TCP is the preferred mechanism to use. It is the simplest protocol to under-
stand and to use. Use the others only if circumstances demand low-overhead.

2.1.2 Comparing Protocols

This section develops a pair of programs (sender and receiver) that do nothing but send
a timestamp from one machine to another. The sender and the receiver are implemented
with each of the three protocols available and demonstrate the differences between them.

2.1.2.1 ‘/inet/tcp’

Once again, always use TCP. (Use UDP when low overhead is a necessity, and use RAW
for network experimentation.) The first example is the sender program:

Server
BEGIN {
print strftime() |& "/inet/tcp/8888/0/0"

10 TCP/IP Internetworking With gawk

close("/inet/tcp/8888/0/0")
}

The receiver is very simple:
Client
BEGIN {
"/inet/tcp/0/localhost/8888" |& getline
print $0
close("/inet/tcp/0/localhost/8888")

}

TCP guarantees that the bytes arrive at the receiving end in exactly the same order that
they were sent. No byte is lost (except for broken connections), doubled, or out of order.
Some overhead is necessary to accomplish this, but this is the price to pay for a reliable
service. It does matter which side starts first. The sender/server has to be started first,
and it waits for the receiver to read a line.

2.1.2.2 ‘/inet/udp’

The server and client programs that use UDP are almost identical to their TCP coun-
terparts; only the protocol has changed. As before, it does matter which side starts first.
The receiving side blocks and waits for the sender. In this case, the receiver/client has to
be started first:

Chapter 2: Networking With gawk 11

Server
BEGIN {
print strftime() |& "/inet/udp/8888/0/0"
close("/inet/udp/8888/0/0")

}

The receiver is almost identical to the TCP receiver:

Client
BEGIN {
"/inet/udp/0/localhost/8888" |& getline
print $0
close("/inet/udp/0/localhost/8888")

}

UDP cannot guarantee that the datagrams at the receiving end will arrive in exactly the
same order they were sent. Some datagrams could be lost, some doubled, and some out of
order. But no overhead is necessary to accomplish this. This unreliable behavior is good
enough for tasks such as data acquisition, logging, and even stateless services like NFS.

2.1.2.3 ‘/inet/raw’

This is an IP-level protocol. Only root is allowed to access this special file. It is meant
to be the basis for implementing and experimenting with transport-level protocols.1 In the
most general case, the sender has to supply the encapsulating header bytes in front of the
packet and the receiver has to strip the additional bytes from the message.

RAW receivers cannot receive packets sent with TCP or UDP because the operating
system does not deliver the packets to a RAW receiver. The operating system knows about
some of the protocols on top of IP and decides on its own which packet to deliver to which
process. Therefore, the UDP receiver must be used for receiving UDP datagrams sent
with the RAW sender. This is a dark corner, not only of gawk, but also of TCP/IP.

For extended experimentation with protocols, look into the approach implemented in a
tool called SPAK. This tool reflects the hierarchical layering of protocols (encapsulation)
in the way data streams are piped out of one program into the next one. It shows which
protocol is based on which other (lower-level) protocol by looking at the command-line
ordering of the program calls. Cleverly thought out, SPAK is much better than gawk’s
‘/inet’ for learning the meaning of each and every bit in the protocol headers.

The next example uses the RAW protocol to emulate the behavior of UDP. The sender
program is the same as above, but with some additional bytes that fill the places of the
UDP fields:

1 This special file is reserved, but not otherwise currently implemented.

12 TCP/IP Internetworking With gawk

BEGIN {
Message = "Hello world\n"
SourcePort = 0
DestinationPort = 8888
MessageLength = length(Message)+8
RawService = "/inet/raw/0/localhost/0"
printf("%c%c%c%c%c%c%c%c%s",

SourcePort/256, SourcePort%256,
DestinationPort/256, DestinationPort%256,
MessageLength/256, MessageLength%256,
0, 0, Message) |& RawService

fflush(RawService)
close(RawService)

}

Since this program tries to emulate the behavior of UDP, it checks if the RAW sender
is understood by the UDP receiver but not if the RAW receiver can understand the UDP
sender. In a real network, the RAW receiver is hardly of any use because it gets every IP
packet that comes across the network. There are usually so many packets that gawk would
be too slow for processing them. Only on a network with little traffic can the IP-level
receiver program be tested. Programs for analyzing IP traffic on modem or ISDN channels
should be possible.

Port numbers do not have a meaning when using ‘/inet/raw’. Their fields have to be
‘0’. Only TCP and UDP use ports. Receiving data from ‘/inet/raw’ is difficult, not only
because of processing speed but also because data is usually binary and not restricted to
ASCII. This implies that line separation with RS does not work as usual.

2.2 Establishing a TCP Connection

Let’s observe a network connection at work. Type in the following program and watch
the output. Within a second, it connects via TCP (‘/inet/tcp’) to the machine it is running
on (‘localhost’) and asks the service ‘daytime’ on the machine what time it is:

BEGIN {
"/inet/tcp/0/localhost/daytime" |& getline
print $0
close("/inet/tcp/0/localhost/daytime")

}

Even experienced awk users will find the second line strange in two respects:
• A special file is used as a shell command that pipes its output into getline. One

would rather expect to see the special file being read like any other file (‘getline <
"/inet/tcp/0/localhost/daytime")’.

• The operator ‘|&’ has not been part of any awk implementation (until now). It is
actually the only extension of the awk language needed (apart from the special files) to
introduce network access.

The ‘|&’ operator was introduced in gawk 3.1 in order to overcome the crucial restriction
that access to files and pipes in awk is always unidirectional. It was formerly impossible
to use both access modes on the same file or pipe. Instead of changing the whole concept

Chapter 2: Networking With gawk 13

of file access, the ‘|&’ operator behaves exactly like the usual pipe operator except for two
additions:
• Normal shell commands connected to their gawk program with a ‘|&’ pipe can be

accessed bidirectionally. The ‘|&’ turns out to be a quite general, useful, and natural
extension of awk.

• Pipes that consist of a special file name for network connections are not executed as
shell commands. Instead, they can be read and written to, just like a full-duplex
network connection.

In the earlier example, the ‘|&’ operator tells getline to read a line from the special
file ‘/inet/tcp/0/localhost/daytime’. We could also have printed a line into the special
file. But instead we just read a line with the time, printed it, and closed the connection.
(While we could just let gawk close the connection by finishing the program, in this book
we are pedantic and always explicitly close the connections.)

2.3 Troubleshooting Connection Problems

It may well be that for some reason the program shown in the previous example does not
run on your machine. When looking at possible reasons for this, you will learn much about
typical problems that arise in network programming. First of all, your implementation of
gawk may not support network access because it is a pre-3.1 version or you do not have a
network interface in your machine. Perhaps your machine uses some other protocol, such
as DECnet or Novell’s IPX. For the rest of this chapter, we will assume you work on a Unix
machine that supports TCP/IP. If the previous example program does not run on your
machine, it may help to replace the name ‘localhost’ with the name of your machine or its
IP address. If it does, you could replace ‘localhost’ with the name of another machine in
your vicinity—this way, the program connects to another machine. Now you should see the
date and time being printed by the program, otherwise your machine may not support the
‘daytime’ service. Try changing the service to ‘chargen’ or ‘ftp’. This way, the program
connects to other services that should give you some response. If you are curious, you
should have a look at your ‘/etc/services’ file. It could look like this:

/etc/services:
#
Network services, Internet style
#
Name Number/Protcol Alternate name # Comments

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
daytime 13/tcp
daytime 13/udp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail

14 TCP/IP Internetworking With gawk

finger 79/tcp
www 80/tcp http # WorldWideWeb HTTP
www 80/udp # HyperText Transfer Protocol
pop-2 109/tcp postoffice # POP version 2
pop-2 109/udp
pop-3 110/tcp # POP version 3
pop-3 110/udp
nntp 119/tcp readnews untp # USENET News
irc 194/tcp # Internet Relay Chat
irc 194/udp
...

Here, you find a list of services that traditional Unix machines usually support. If your
GNU/Linux machine does not do so, it may be that these services are switched off in
some startup script. Systems running some flavor of Microsoft Windows usually do not
support these services. Nevertheless, it is possible to do networking with gawk on Microsoft
Windows.2 The first column of the file gives the name of the service, and the second column
gives a unique number and the protocol that one can use to connect to this service. The
rest of the line is treated as a comment. You see that some services (‘echo’) support TCP
as well as UDP.

2.4 Interacting with a Network Service

The next program makes use of the possibility to really interact with a network service
by printing something into the special file. It asks the so-called finger service if a user of
the machine is logged in. When testing this program, try to change ‘localhost’ to some
other machine name in your local network:

BEGIN {
NetService = "/inet/tcp/0/localhost/finger"
print "name" |& NetService
while ((NetService |& getline) > 0)
print $0

close(NetService)
}

After telling the service on the machine which user to look for, the program repeatedly
reads lines that come as a reply. When no more lines are coming (because the service has
closed the connection), the program also closes the connection. Try replacing "name" with
your login name (or the name of someone else logged in). For a list of all users currently
logged in, replace name with an empty string ("").

The final close command could be safely deleted from the above script, because the
operating system closes any open connection by default when a script reaches the end of
execution. In order to avoid portability problems, it is best to always close connections

2 Microsoft prefered to ignore the TCP/IP family of protocols until 1995. Then came the rise of the
Netscape browser as a landmark “killer application.” Microsoft added TCP/IP support and their own
browser to Microsoft Windows 95 at the last minute. They even back-ported their TCP/IP implemen-
tation to Microsoft Windows for Workgroups 3.11, but it was a rather rudimentary and half-hearted
implementation. Nevertheless, the equivalent of ‘/etc/services’ resides under ‘c:\windows\services’
on Microsoft Windows.

Chapter 2: Networking With gawk 15

explicitly. With the Linux kernel, for example, proper closing results in flushing of buffers.
Letting the close happen by default may result in discarding buffers.

When looking at ‘/etc/services’ you may have noticed that the ‘daytime’ service is
also available with ‘udp’. In the earlier example, change ‘tcp’ to ‘udp’, and change ‘finger’
to ‘daytime’. After starting the modified program, you see the expected day and time
message. The program then hangs, because it waits for more lines coming from the service.
However, they never come. This behavior is a consequence of the differences between TCP
and UDP. When using UDP, neither party is automatically informed about the other closing
the connection. Continuing to experiment this way reveals many other subtle differences
between TCP and UDP. To avoid such trouble, one should always remember the advice
Douglas E. Comer and David Stevens give in Volume III of their series Internetworking
With TCP (page 14):

When designing client-server applications, beginners are strongly advised to
use TCP because it provides reliable, connection-oriented communication. Pro-
grams only use UDP if the application protocol handles reliability, the applica-
tion requires hardware broadcast or multicast, or the application cannot tolerate
virtual circuit overhead.

2.5 Setting Up a Service

The preceding programs behaved as clients that connect to a server somewhere on the
Internet and request a particular service. Now we set up such a service to mimic the
behavior of the ‘daytime’ service. Such a server does not know in advance who is going to
connect to it over the network. Therefore, we cannot insert a name for the host to connect
to in our special file name.

Start the following program in one window. Notice that the service does not have the
name ‘daytime’, but the number ‘8888’. From looking at ‘/etc/services’, you know that
names like ‘daytime’ are just mnemonics for predetermined 16-bit integers. Only the system
administrator (root) could enter our new service into ‘/etc/services’ with an appropriate
name. Also notice that the service name has to be entered into a different field of the special
file name because we are setting up a server, not a client:

BEGIN {
print strftime() |& "/inet/tcp/8888/0/0"
close("/inet/tcp/8888/0/0")

}

Now open another window on the same machine. Copy the client program given as the
first example (see Section 2.2 [Establishing a TCP Connection], page 12) to a new file and
edit it, changing the name ‘daytime’ to ‘8888’. Then start the modified client. You should
get a reply like this:

Sat Sep 27 19:08:16 CEST 1997

Both programs explicitly close the connection.

Now we will intentionally make a mistake to see what happens when the name ‘8888’
(the so-called port) is already used by another service. Start the server program in both
windows. The first one works, but the second one complains that it could not open the
connection. Each port on a single machine can only be used by one server program at

16 TCP/IP Internetworking With gawk

a time. Now terminate the server program and change the name ‘8888’ to ‘echo’. After
restarting it, the server program does not run any more, and you know why: there is already
an ‘echo’ service running on your machine. But even if this isn’t true, you would not get
your own ‘echo’ server running on a Unix machine, because the ports with numbers smaller
than 1024 (‘echo’ is at port 7) are reserved for root. On machines running some flavor
of Microsoft Windows, there is no restriction that reserves ports 1 to 1024 for a privileged
user; hence, you can start an ‘echo’ server there.

Turning this short server program into something really useful is simple. Imagine a
server that first reads a file name from the client through the network connection, then does
something with the file and sends a result back to the client. The server-side processing
could be:

BEGIN {
NetService = "/inet/tcp/8888/0/0"
NetService |& getline
CatPipe = ("cat " $1) # sets $0 and the fields
while ((CatPipe | getline) > 0)
print $0 |& NetService

close(NetService)
}

and we would have a remote copying facility. Such a server reads the name of a file from
any client that connects to it and transmits the contents of the named file across the net.
The server-side processing could also be the execution of a command that is transmitted
across the network. From this example, you can see how simple it is to open up a security
hole on your machine. If you allow clients to connect to your machine and execute arbitrary
commands, anyone would be free to do ‘rm -rf *’.

2.6 Reading Email

The distribution of email is usually done by dedicated email servers that communicate
with your machine using special protocols. To receive email, we will use the Post Office
Protocol (POP). Sending can be done with the much older Simple Mail Transfer Protocol
(SMTP).

When you type in the following program, replace the emailhost by the name of your
local email server. Ask your administrator if the server has a POP service, and then use its
name or number in the program below. Now the program is ready to connect to your email
server, but it will not succeed in retrieving your mail because it does not yet know your
login name or password. Replace them in the program and it shows you the first email the
server has in store:

BEGIN {
POPService = "/inet/tcp/0/emailhost/pop3"
RS = ORS = "\r\n"
print "user name" |& POPService
POPService |& getline
print "pass password" |& POPService
POPService |& getline
print "retr 1" |& POPService

Chapter 2: Networking With gawk 17

POPService |& getline
if ($1 != "+OK") exit
print "quit" |& POPService
RS = "\r\n\\.\r\n"
POPService |& getline
print $0
close(POPService)

}

The record separators RS and ORS are redefined because the protocol (POP) requires CR-
LF to separate lines. After identifying yourself to the email service, the command ‘retr 1’
instructs the service to send the first of all your email messages in line. If the service replies
with something other than ‘+OK’, the program exits; maybe there is no email. Otherwise,
the program first announces that it intends to finish reading email, and then redefines RS
in order to read the entire email as multiline input in one record. From the POP RFC, we
know that the body of the email always ends with a single line containing a single dot. The
program looks for this using ‘RS = "\r\n\\.\r\n"’. When it finds this sequence in the mail
message, it quits. You can invoke this program as often as you like; it does not delete the
message it reads, but instead leaves it on the server.

2.7 Reading a Web Page

Retrieving a web page from a web server is as simple as retrieving email from an email
server. We only have to use a similar, but not identical, protocol and a different port.
The name of the protocol is HyperText Transfer Protocol (HTTP) and the port number
is usually 80. As in the preceding section, ask your administrator about the name of your
local web server or proxy web server and its port number for HTTP requests.

The following program employs a rather crude approach toward retrieving a web page.
It uses the prehistoric syntax of HTTP 0.9, which almost all web servers still support. The
most noticeable thing about it is that the program directs the request to the local proxy
server whose name you insert in the special file name (which in turn calls ‘www.yahoo.com’):

BEGIN {
RS = ORS = "\r\n"
HttpService = "/inet/tcp/0/proxy/80"
print "GET http://www.yahoo.com" |& HttpService
while ((HttpService |& getline) > 0)

print $0
close(HttpService)

}

Again, lines are separated by a redefined RS and ORS. The GET request that we send to
the server is the only kind of HTTP request that existed when the web was created in the
early 1990s. HTTP calls this GET request a “method,” which tells the service to transmit a
web page (here the home page of the Yahoo! search engine). Version 1.0 added the request
methods HEAD and POST. The current version of HTTP is 1.1,3 and knows the additional

3 Version 1.0 of HTTP was defined in RFC 1945. HTTP 1.1 was initially specified in RFC 2068. In June
1999, RFC 2068 was made obsolete by RFC 2616, an update without any substantial changes.

18 TCP/IP Internetworking With gawk

request methods OPTIONS, PUT, DELETE, and TRACE. You can fill in any valid web address,
and the program prints the HTML code of that page to your screen.

Notice the similarity between the responses of the POP and HTTP services. First, you
get a header that is terminated by an empty line, and then you get the body of the page in
HTML. The lines of the headers also have the same form as in POP. There is the name of
a parameter, then a colon, and finally the value of that parameter.

Images (‘.png’ or ‘.gif’ files) can also be retrieved this way, but then you get binary
data that should be redirected into a file. Another application is calling a CGI (Common
Gateway Interface) script on some server. CGI scripts are used when the contents of a web
page are not constant, but generated instantly at the moment you send a request for the
page. For example, to get a detailed report about the current quotes of Motorola stock
shares, call a CGI script at Yahoo! with the following:

get = "GET http://quote.yahoo.com/q?s=MOT&d=t"
print get |& HttpService

You can also request weather reports this way.

2.8 A Primitive Web Service

Now we know enough about HTTP to set up a primitive web service that just says
"Hello, world" when someone connects to it with a browser. Compared to the situation
in the preceding section, our program changes the role. It tries to behave just like the
server we have observed. Since we are setting up a server here, we have to insert the port
number in the ‘localport’ field of the special file name. The other two fields (hostname
and remoteport) have to contain a ‘0’ because we do not know in advance which host will
connect to our service.

In the early 1990s, all a server had to do was send an HTML document and close the
connection. Here, we adhere to the modern syntax of HTTP. The steps are as follows:
1. Send a status line telling the web browser that everything is okay.
2. Send a line to tell the browser how many bytes follow in the body of the message. This

was not necessary earlier because both parties knew that the document ended when the
connection closed. Nowadays it is possible to stay connected after the transmission of
one web page. This is to avoid the network traffic necessary for repeatedly establishing
TCP connections for requesting several images. Thus, there is the need to tell the
receiving party how many bytes will be sent. The header is terminated as usual with
an empty line.

3. Send the "Hello, world" body in HTML. The useless while loop swallows the request
of the browser. We could actually omit the loop, and on most machines the program
would still work. First, start the following program:
BEGIN {
RS = ORS = "\r\n"
HttpService = "/inet/tcp/8080/0/0"
Hello = "<HTML><HEAD>" \

"<TITLE>A Famous Greeting</TITLE></HEAD>" \
"<BODY><H1>Hello, world</H1></BODY></HTML>"

Len = length(Hello) + length(ORS)

Chapter 2: Networking With gawk 19

print "HTTP/1.0 200 OK" |& HttpService
print "Content-Length: " Len ORS |& HttpService
print Hello |& HttpService
while ((HttpService |& getline) > 0)

continue;
close(HttpService)

}

Now, on the same machine, start your favorite browser and let it point to
http://localhost:8080 (the browser needs to know on which port our server is listening
for requests). If this does not work, the browser probably tries to connect to a proxy server
that does not know your machine. If so, change the browser’s configuration so that the
browser does not try to use a proxy to connect to your machine.

2.9 A Web Service with Interaction

Setting up a web service that allows user interaction is more difficult and shows us the
limits of network access in gawk. In this section, we develop a main program (a BEGIN
pattern and its action) that will become the core of event-driven execution controlled by
a graphical user interface (GUI). Each HTTP event that the user triggers by some action
within the browser is received in this central procedure. Parameters and menu choices are
extracted from this request, and an appropriate measure is taken according to the user’s
choice. For example:

BEGIN {
if (MyHost == "") {

"uname -n" | getline MyHost
close("uname -n")

}
if (MyPort == 0) MyPort = 8080
HttpService = "/inet/tcp/" MyPort "/0/0"
MyPrefix = "http://" MyHost ":" MyPort
SetUpServer()
while ("awk" != "complex") {
header lines are terminated this way
RS = ORS = "\r\n"
Status = 200 # this means OK
Reason = "OK"
Header = TopHeader
Document = TopDoc
Footer = TopFooter
if (GETARG["Method"] == "GET") {

HandleGET()
} else if (GETARG["Method"] == "HEAD") {

not yet implemented
} else if (GETARG["Method"] != "") {

print "bad method", GETARG["Method"]
}
Prompt = Header Document Footer
print "HTTP/1.0", Status, Reason |& HttpService

20 TCP/IP Internetworking With gawk

print "Connection: Close" |& HttpService
print "Pragma: no-cache" |& HttpService
len = length(Prompt) + length(ORS)
print "Content-length:", len |& HttpService
print ORS Prompt |& HttpService
ignore all the header lines
while ((HttpService |& getline) > 0)

;
stop talking to this client
close(HttpService)
wait for new client request
HttpService |& getline
do some logging
print systime(), strftime(), $0
read request parameters
CGI_setup($1, $2, $3)

}
}

This web server presents menu choices in the form of HTML links. Therefore, it
has to tell the browser the name of the host it is residing on. When starting the
server, the user may supply the name of the host from the command line with ‘gawk -v
MyHost="Rumpelstilzchen"’. If the user does not do this, the server looks up the name
of the host it is running on for later use as a web address in HTML documents. The same
applies to the port number. These values are inserted later into the HTML content of the
web pages to refer to the home system.

Each server that is built around this core has to initialize some application-dependent
variables (such as the default home page) in a procedure SetUpServer, which is called
immediately before entering the infinite loop of the server. For now, we will write an
instance that initiates a trivial interaction. With this home page, the client user can click
on two possible choices, and receive the current date either in human-readable format or in
seconds since 1970:

function SetUpServer() {
TopHeader = "<HTML><HEAD>"
TopHeader = TopHeader \

"<title>My name is GAWK, GNU AWK</title></HEAD>"
TopDoc = "<BODY><h2>\
Do you prefer your date <A HREF=" MyPrefix \
"/human>human or \
POSIXed?</h2>" ORS ORS

TopFooter = "</BODY></HTML>"
}

On the first run through the main loop, the default line terminators are set and
the default home page is copied to the actual home page. Since this is the first run,
GETARG["Method"] is not initialized yet, hence the case selection over the method does
nothing. Now that the home page is initialized, the server can start communicating to a
client browser.

Chapter 2: Networking With gawk 21

It does so by printing the HTTP header into the network connection (‘print ... |&
HttpService’). This command blocks execution of the server script until a client connects.
If this server script is compared with the primitive one we wrote before, you will notice
two additional lines in the header. The first instructs the browser to close the connection
after each request. The second tells the browser that it should never try to remember earlier
requests that had identical web addresses (no caching). Otherwise, it could happen that the
browser retrieves the time of day in the previous example just once, and later it takes the
web page from the cache, always displaying the same time of day although time advances
each second.

Having supplied the initial home page to the browser with a valid document stored in
the parameter Prompt, it closes the connection and waits for the next request. When the
request comes, a log line is printed that allows us to see which request the server receives.
The final step in the loop is to call the function CGI_setup, which reads all the lines of the
request (coming from the browser), processes them, and stores the transmitted parameters
in the array PARAM. The complete text of these application-independent functions can be
found in Section 2.9.1 [A Simple CGI Library], page 22. For now, we use a simplified version
of CGI_setup:

function CGI_setup(method, uri, version, i) {
delete GETARG; delete MENU; delete PARAM
GETARG["Method"] = $1
GETARG["URI"] = $2
GETARG["Version"] = $3
i = index($2, "?")
is there a "?" indicating a CGI request?
if (i > 0) {
split(substr($2, 1, i-1), MENU, "[/:]")
split(substr($2, i+1), PARAM, "&")
for (i in PARAM) {
j = index(PARAM[i], "=")
GETARG[substr(PARAM[i], 1, j-1)] = \

substr(PARAM[i], j+1)
}

} else { # there is no "?", no need for splitting PARAMs
split($2, MENU, "[/:]")

}
}

At first, the function clears all variables used for global storage of request parameters.
The rest of the function serves the purpose of filling the global parameters with the extracted
new values. To accomplish this, the name of the requested resource is split into parts and
stored for later evaluation. If the request contains a ‘?’, then the request has CGI variables
seamlessly appended to the web address. Everything in front of the ‘?’ is split up into menu
items, and everything behind the ‘?’ is a list of ‘variable=value’ pairs (separated by ‘&’) that
also need splitting. This way, CGI variables are isolated and stored. This procedure lacks
recognition of special characters that are transmitted in coded form4. Here, any optional
request header and body parts are ignored. We do not need header parameters and the

4 As defined in RFC 2068.

22 TCP/IP Internetworking With gawk

request body. However, when refining our approach or working with the POST and PUT
methods, reading the header and body becomes inevitable. Header parameters should then
be stored in a global array as well as the body.

On each subsequent run through the main loop, one request from a browser is received,
evaluated, and answered according to the user’s choice. This can be done by letting the
value of the HTTP method guide the main loop into execution of the procedure HandleGET,
which evaluates the user’s choice. In this case, we have only one hierarchical level of menus,
but in the general case, menus are nested. The menu choices at each level are separated by
‘/’, just as in file names. Notice how simple it is to construct menus of arbitrary depth:

function HandleGET() {
if (MENU[2] == "human") {
Footer = strftime() TopFooter

} else if (MENU[2] == "POSIX") {
Footer = systime() TopFooter

}
}

The disadvantage of this approach is that our server is slow and can handle only one
request at a time. Its main advantage, however, is that the server consists of just one gawk
program. No need for installing an httpd, and no need for static separate HTML files, CGI
scripts, or root privileges. This is rapid prototyping. This program can be started on the
same host that runs your browser. Then let your browser point to http://localhost:8080.

It is also possible to include images into the HTML pages. Most browsers support the
not very well-known ‘.xbm’ format, which may contain only monochrome pictures but is
an ASCII format. Binary images are possible but not so easy to handle. Another way of
including images is to generate them with a tool such as GNUPlot, by calling the tool with
the system function or through a pipe.

2.9.1 A Simple CGI Library

HTTP is like being married: you have to be able to handle whatever you’re
given, while being very careful what you send back.
Phil Smith III,
http://www.netfunny.com/rhf/jokes/99/Mar/http.html

In Section 2.9 [A Web Service with Interaction], page 19, we saw the function CGI_
setup as part of the web server “core logic” framework. The code presented there handles
almost everything necessary for CGI requests. One thing it doesn’t do is handle encoded
characters in the requests. For example, an ‘&’ is encoded as a percent sign followed by
the hexadecimal value: ‘%26’. These encoded values should be decoded. Following is a
simple library to perform these tasks. This code is used for all web server examples used
throughout the rest of this book. If you want to use it for your own web server, store the
source code into a file named ‘inetlib.awk’. Then you can include these functions into
your code by placing the following statement into your program (on the first line of your
script):

@include inetlib.awk

But beware, this mechanism is only possible if you invoke your web server script with igawk
instead of the usual awk or gawk. Here is the code:

Chapter 2: Networking With gawk 23

CGI Library and core of a web server

Global arrays
GETARG --- arguments to CGI GET command
MENU --- menu items (path names)
PARAM --- parameters of form x=y

Optional variable MyHost contains host address
Optional variable MyPort contains port number
Needs TopHeader, TopDoc, TopFooter
Sets MyPrefix, HttpService, Status, Reason

BEGIN {
if (MyHost == "") {

"uname -n" | getline MyHost
close("uname -n")

}
if (MyPort == 0) MyPort = 8080
HttpService = "/inet/tcp/" MyPort "/0/0"
MyPrefix = "http://" MyHost ":" MyPort
SetUpServer()
while ("awk" != "complex") {
header lines are terminated this way
RS = ORS = "\r\n"
Status = 200 # this means OK
Reason = "OK"
Header = TopHeader
Document = TopDoc
Footer = TopFooter
if (GETARG["Method"] == "GET") {

HandleGET()
} else if (GETARG["Method"] == "HEAD") {

not yet implemented
} else if (GETARG["Method"] != "") {

print "bad method", GETARG["Method"]
}
Prompt = Header Document Footer
print "HTTP/1.0", Status, Reason |& HttpService
print "Connection: Close" |& HttpService
print "Pragma: no-cache" |& HttpService
len = length(Prompt) + length(ORS)
print "Content-length:", len |& HttpService
print ORS Prompt |& HttpService
ignore all the header lines
while ((HttpService |& getline) > 0)

continue
stop talking to this client
close(HttpService)
wait for new client request

24 TCP/IP Internetworking With gawk

HttpService |& getline
do some logging
print systime(), strftime(), $0
CGI_setup($1, $2, $3)

}
}

function CGI_setup(method, uri, version, i)
{

delete GETARG
delete MENU
delete PARAM
GETARG["Method"] = method
GETARG["URI"] = uri
GETARG["Version"] = version

i = index(uri, "?")
if (i > 0) { # is there a "?" indicating a CGI request?

split(substr(uri, 1, i-1), MENU, "[/:]")
split(substr(uri, i+1), PARAM, "&")
for (i in PARAM) {

PARAM[i] = _CGI_decode(PARAM[i])
j = index(PARAM[i], "=")
GETARG[substr(PARAM[i], 1, j-1)] = \

substr(PARAM[i], j+1)
}

} else { # there is no "?", no need for splitting PARAMs
split(uri, MENU, "[/:]")

}
for (i in MENU) # decode characters in path

if (i > 4) # but not those in host name
MENU[i] = _CGI_decode(MENU[i])

}

This isolates details in a single function, CGI_setup. Decoding of encoded characters is
pushed off to a helper function, _CGI_decode. The use of the leading underscore (‘_’) in
the function name is intended to indicate that it is an “internal” function, although there
is nothing to enforce this:

function _CGI_decode(str, hexdigs, i, pre, code1, code2,
val, result)

{
hexdigs = "123456789abcdef"

i = index(str, "%")
if (i == 0) # no work to do

return str

do {
pre = substr(str, 1, i-1) # part before %xx
code1 = substr(str, i+1, 1) # first hex digit

Chapter 2: Networking With gawk 25

code2 = substr(str, i+2, 1) # second hex digit
str = substr(str, i+3) # rest of string

code1 = tolower(code1)
code2 = tolower(code2)
val = index(hexdigs, code1) * 16 \

+ index(hexdigs, code2)

result = result pre sprintf("%c", val)
i = index(str, "%")

} while (i != 0)
if (length(str) > 0)

result = result str
return result

}

This works by splitting the string apart around an encoded character. The two digits
are converted to lowercase characters and looked up in a string of hex digits. Note that 0 is
not in the string on purpose; index returns zero when it’s not found, automatically giving
the correct value! Once the hexadecimal value is converted from characters in a string into
a numerical value, sprintf converts the value back into a real character. The following is
a simple test harness for the above functions:

BEGIN {
CGI_setup("GET",
"http://www.gnu.org/cgi-bin/foo?p1=stuff&p2=stuff%26junk" \

"&percent=a %25 sign",
"1.0")
for (i in MENU)

printf "MENU[\"%s\"] = %s\n", i, MENU[i]
for (i in PARAM)

printf "PARAM[\"%s\"] = %s\n", i, PARAM[i]
for (i in GETARG)

printf "GETARG[\"%s\"] = %s\n", i, GETARG[i]
}

And this is the result when we run it:
$ gawk -f testserv.awk
a MENU["4"] = www.gnu.org
a MENU["5"] = cgi-bin
a MENU["6"] = foo
a MENU["1"] = http
a MENU["2"] =
a MENU["3"] =
a PARAM["1"] = p1=stuff
a PARAM["2"] = p2=stuff&junk
a PARAM["3"] = percent=a % sign
a GETARG["p1"] = stuff
a GETARG["percent"] = a % sign
a GETARG["p2"] = stuff&junk
a GETARG["Method"] = GET

26 TCP/IP Internetworking With gawk

a GETARG["Version"] = 1.0
a GETARG["URI"] = http://www.gnu.org/cgi-bin/foo?p1=stuff&
p2=stuff%26junk&percent=a %25 sign

2.10 A Simple Web Server

In the preceding section, we built the core logic for event-driven GUIs. In this section,
we finally extend the core to a real application. No one would actually write a commercial
web server in gawk, but it is instructive to see that it is feasible in principle.

The application is ELIZA, the famous program by Joseph Weizenbaum that mimics
the behavior of a professional psychotherapist when talking to you. Weizenbaum would
certainly object to this description, but this is part of the legend around ELIZA. Take the
site-independent core logic and append the following code:

function SetUpServer() {
SetUpEliza()
TopHeader = \
"<HTML><title>An HTTP-based System with GAWK</title>\
<HEAD><META HTTP-EQUIV=\"Content-Type\"\
CONTENT=\"text/html; charset=iso-8859-1\"></HEAD>\
<BODY BGCOLOR=\"#ffffff\" TEXT=\"#000000\"\
LINK=\"#0000ff\" VLINK=\"#0000ff\"\
ALINK=\"#0000ff\"> "

TopDoc = "\
<h2>Please choose one of the following actions:</h2>\
\
\
About this server\
\
About Eliza\
\
<A HREF=" MyPrefix \

"/StartELIZA>Start talking to Eliza"
TopFooter = "</BODY></HTML>"

}

SetUpServer is similar to the previous example, except for calling another function,
SetUpEliza. This approach can be used to implement other kinds of servers. The only
changes needed to do so are hidden in the functions SetUpServer and HandleGET. Perhaps
it might be necessary to implement other HTTP methods. The igawk program that comes
with gawk may be useful for this process.

When extending this example to a complete application, the first thing to do is to
implement the function SetUpServer to initialize the HTML pages and some variables.
These initializations determine the way your HTML pages look (colors, titles, menu items,
etc.).

The function HandleGET is a nested case selection that decides which page the user wants
to see next. Each nesting level refers to a menu level of the GUI. Each case implements a
certain action of the menu. On the deepest level of case selection, the handler essentially

Chapter 2: Networking With gawk 27

knows what the user wants and stores the answer into the variable that holds the HTML
page contents:

function HandleGET() {
A real HTTP server would treat some parts of the URI as a file name.
We take parts of the URI as menu choices and go on accordingly.
if(MENU[2] == "AboutServer") {
Document = "This is not a CGI script.\
This is an httpd, an HTML file, and a CGI script all \
in one GAWK script. It needs no separate www-server, \
no installation, and no root privileges.\
<p>To run it, do this:</p>\
 start this script with \"gawk -f httpserver.awk\",\
 and on the same host let your www browser open location\

\"http://localhost:8080\"\
\<p>\ Details of HTTP come from:</p>\

Hethmon: Illustrated Guide to HTTP</p>\
RFC 2068<p>JK 14.9.1997</p>"

} else if (MENU[2] == "AboutELIZA") {
Document = "This is an implementation of the famous ELIZA\

program by Joseph Weizenbaum. It is written in GAWK and\
/bin/sh: expad: command not found
} else if (MENU[2] == "StartELIZA") {
gsub(/\+/, " ", GETARG["YouSay"])
Here we also have to substitute coded special characters
Document = "<form method=GET>" \
"<h3>" ElizaSays(GETARG["YouSay"]) "</h3>\
<p><input type=text name=YouSay value=\"\" size=60>\

<input type=submit value=\"Tell her about it\"></p></form>"

}
}

Now we are down to the heart of ELIZA, so you can see how it works. Initially the
user does not say anything; then ELIZA resets its money counter and asks the user to tell
what comes to mind open heartedly. The subsequent answers are converted to uppercase
characters and stored for later comparison. ELIZA presents the bill when being confronted
with a sentence that contains the phrase “shut up.” Otherwise, it looks for keywords in
the sentence, conjugates the rest of the sentence, remembers the keyword for later use, and
finally selects an answer from the set of possible answers:

function ElizaSays(YouSay) {
if (YouSay == "") {
cost = 0
answer = "HI, IM ELIZA, TELL ME YOUR PROBLEM"

} else {
q = toupper(YouSay)
gsub("’", "", q)
if(q == qold) {
answer = "PLEASE DONT REPEAT YOURSELF !"

} else {
if (index(q, "SHUT UP") > 0) {

28 TCP/IP Internetworking With gawk

answer = "WELL, PLEASE PAY YOUR BILL. ITS EXACTLY ... $"\
int(100*rand()+30+cost/100)

} else {
qold = q
w = "-" # no keyword recognized yet
for (i in k) { # search for keywords
if (index(q, i) > 0) {
w = i
break

}
}
if (w == "-") { # no keyword, take old subject
w = wold
subj = subjold

} else { # find subject
subj = substr(q, index(q, w) + length(w)+1)
wold = w
subjold = subj # remember keyword and subject

}
for (i in conj)

gsub(i, conj[i], q) # conjugation
from all answers to this keyword, select one randomly
answer = r[indices[int(split(k[w], indices) * rand()) + 1]]
insert subject into answer
gsub("_", subj, answer)

}
}

}
cost += length(answer) # for later payment : 1 cent per character
return answer

}

In the long but simple function SetUpEliza, you can see tables for conjugation, keywords,
and answers.5 The associative array k contains indices into the array of answers r. To choose
an answer, ELIZA just picks an index randomly:

function SetUpEliza() {
srand()
wold = "-"
subjold = " "

table for conjugation
conj[" ARE "] = " AM "
conj["WERE "] = "WAS "
conj[" YOU "] = " I "
conj["YOUR "] = "MY "
conj[" IVE "] =\
conj[" I HAVE "] = " YOU HAVE "
conj[" YOUVE "] =\

5 The version shown here is abbreviated. The full version comes with the gawk distribution.

Chapter 2: Networking With gawk 29

conj[" YOU HAVE "] = " I HAVE "
conj[" IM "] =\
conj[" I AM "] = " YOU ARE "
conj[" YOURE "] =\
conj[" YOU ARE "] = " I AM "

table of all answers
r[1] = "DONT YOU BELIEVE THAT I CAN _"
r[2] = "PERHAPS YOU WOULD LIKE TO BE ABLE TO _ ?"
...

table for looking up answers that
fit to a certain keyword
k["CAN YOU"] = "1 2 3"
k["CAN I"] = "4 5"
k["YOU ARE"] =\
k["YOURE"] = "6 7 8 9"
...

}

Some interesting remarks and details (including the original source code of ELIZA) are
found on Mark Humphrys’ home page. Yahoo! also has a page with a collection of ELIZA-
like programs. Many of them are written in Java, some of them disclosing the Java source
code, and a few even explain how to modify the Java source code.

2.11 Network Programming Caveats

By now it should be clear that debugging a networked application is more complicated
than debugging a single-process single-hosted application. The behavior of a networked
application sometimes looks noncausal because it is not reproducible in a strong sense.
Whether a network application works or not sometimes depends on the following:
• How crowded the underlying network is
• If the party at the other end is running or not
• The state of the party at the other end

The most difficult problems for a beginner arise from the hidden states of the underlying
network. After closing a TCP connection, it’s often necessary to wait a short while before
reopening the connection. Even more difficult is the establishment of a connection that
previously ended with a “broken pipe.” Those connections have to “time out” for a minute
or so before they can reopen. Check this with the command ‘netstat -a’, which provides
a list of still “active” connections.

2.12 Where To Go From Here

Now, you have learned enough to build your own application. You could, for example,
take part in the Loebner Contest to win $100,000. The Loebner Prize is the first formal
instantiation of a Turing Test. Hugh Loebner agreed with The Cambridge Center for
Behavioral Studies to underwrite a contest designed to implement the Turing Test. Dr.
Loebner pledged a Grand Prize of $100,000 for the first computer whose responses were

30 TCP/IP Internetworking With gawk

indistinguishable from a human’s. Each year an annual prize of $2000 and a bronze medal
is awarded to the most human computer. The winner of the annual contest is the best entry
relative to other entries that year, irrespective of how good it is in an absolute sense. Here
is an example of a conversation with the winning program of 1997:

(c)1997 Cambridge Center For Behavioral Studies all rights reserved [CONVERSE]
[Intelligent Research Ltd.] Start at: [1997/04/29 08:59:40]
PROGRAM[10:39:20]Hi, my name is Catherine, what’s yours?
JUDGE02[10:39:36]My name is Nathan.
PROGRAM[10:39:37]Well, it’s nice to meet you, Nathan.
PROGRAM[10:39:45]Did you see that story on CNN last night about the lesbian
PROGRAM[10:40:03]couple who came out at a White House party on Sunday?
JUDGE02[10:40:45]No. I’m sorry I missed that. How did the Prez take it?
PROGRAM[10:40:47]Ellen Degeneres was one of them - she was kissing her lover
PROGRAM[10:41:08]in front of Bill Clinton. Do you think he was very
PROGRAM[10:41:21]embarrassed?
JUDGE02[10:41:37]You tell me. I didn’t see it.
PROGRAM[10:41:38]Are you still a Friend of Bill Clinton?
JUDGE02[10:42:22]Yes. I would like to talk about something else. Do you know anything about sculpture.
PROGRAM[10:42:24]Well, I suppose he’s doing his best like most of us, but he
PROGRAM[10:42:35]does seem to attract an UNUSUAL amount of bad publicity,
PROGRAM[10:42:51]wouldnt you say--can it all be bad luck?
JUDGE02[10:43:20]I asked you if you knew anything about sculpture.
PROGRAM[10:43:21]OK, but what happens now--does it all drift on, with
PROGRAM[10:43:36]everyone waiting to see how much his friends have said about
PROGRAM[10:43:47]him under threat of lots and lots of jail-or will something
PROGRAM[10:44:01]dramatic actually happen?
JUDGE02[10:44:19]Do you know what sculpture is?
PROGRAM[10:44:20]Well, youre more a fan of his than I am I guess---though I
PROGRAM[10:44:34]cant SWEAR what Id have done in that locked hotel room, I
PROGRAM[10:44:51]must say.
JUDGE02[10:45:26]Have you ever been to the Salmagundi Club?
PROGRAM[10:45:29]Never. to go back to the original discussion Time to get
PROGRAM[10:45:43]off this one I think and onto something more down to earth!
JUDGE02[10:46:20]What is more down to earth than art?
PROGRAM[10:46:21]I don’t know what -- to be honest. -
PROGRAM[10:46:30]I suppose it depends on where you’re coming from, but as the
PROGRAM[10:46:46]song goes in My Fair Lady, "Why can’t a woman be more like a
PROGRAM[10:47:03]man? "
JUDGE02[10:47:52]I liked that song but I prefer "Why can’t children be more like we are"
JUDGE02[10:48:10]from another play the name of which I cannot remember.
PROGRAM[10:48:12]What, if anything, do you enjoy about being a man?
JUDGE02[10:49:01]I would enjoy all aspects of life no matter what my gender.
PROGRAM[10:49:02]Do you think of yourself as being attractive?

This program insists on always speaking about the same story around Bill Clinton. You
see, even a program with a rather narrow mind can behave so much like a human being
that it can win this prize. It is quite common to let these programs talk to each other via
network connections. But during the competition itself, the program and its computer have

Chapter 2: Networking With gawk 31

to be present at the place the competition is held. We all would love to see a gawk program
win in such an event. Maybe it is up to you to accomplish this?

Some other ideas for useful networked applications:
• Read the file ‘doc/awkforai.txt’ in the gawk distribution. It was written by Ronald P.

Loui (Associate Professor of Computer Science, at Washington University in St. Louis,
loui@ai.wustl.edu) and summarizes why he teaches gawk to students of Artificial
Intelligence. Here are some passages from the text:

The GAWK manual can be consumed in a single lab session and the
language can be mastered by the next morning by the average student.
GAWK’s automatic initialization, implicit coercion, I/O support and lack
of pointers forgive many of the mistakes that young programmers are likely
to make. Those who have seen C but not mastered it are happy to see that
GAWK retains some of the same sensibilities while adding what must be
regarded as spoonsful of syntactic sugar.
. . .
There are further simple answers. Probably the best is the fact that in-
creasingly, undergraduate AI programming is involving the Web. Oren
Etzioni (University of Washington, Seattle) has for a while been arguing
that the “softbot” is replacing the mechanical engineers’ robot as the most
glamorous AI testbed. If the artifact whose behavior needs to be con-
trolled in an intelligent way is the software agent, then a language that
is well-suited to controlling the software environment is the appropriate
language. That would imply a scripting language. If the robot is KAREL,
then the right language is “turn left; turn right.” If the robot is Netscape,
then the right language is something that can generate ‘netscape -remote
’openURL(http://cs.wustl.edu/~loui)’’ with elan.
. . .
AI programming requires high-level thinking. There have always been a
few gifted programmers who can write high-level programs in assembly
language. Most however need the ambient abstraction to have a higher
floor.
. . .
Second, inference is merely the expansion of notation. No matter whether
the logic that underlies an AI program is fuzzy, probabilistic, deontic, defea-
sible, or deductive, the logic merely defines how strings can be transformed
into other strings. A language that provides the best support for string
processing in the end provides the best support for logic, for the explo-
ration of various logics, and for most forms of symbolic processing that AI
might choose to call “reasoning” instead of “logic.” The implication is that
PROLOG, which saves the AI programmer from having to write a unifier,
saves perhaps two dozen lines of GAWK code at the expense of strongly
biasing the logic and representational expressiveness of any approach.

Now that gawk itself can connect to the Internet, it should be obvious that it is suitable
for writing intelligent web agents.

• awk is strong at pattern recognition and string processing. So, it is well suited to the
classic problem of language translation. A first try could be a program that knows
the 100 most frequent English words and their counterparts in German or French.
The service could be implemented by regularly reading email with the program above,

32 TCP/IP Internetworking With gawk

replacing each word by its translation and sending the translation back via SMTP.
Users would send English email to their translation service and get back a translated
email message in return. As soon as this works, more effort can be spent on a real
translation program.

• Another dialogue-oriented application (on the verge of ridicule) is the email “support
service.” Troubled customers write an email to an automatic gawk service that reads
the email. It looks for keywords in the mail and assembles a reply email accordingly.
By carefully investigating the email header, and repeating these keywords through
the reply email, it is rather simple to give the customer a feeling that someone cares.
Ideally, such a service would search a database of previous cases for solutions. If none
exists, the database could, for example, consist of all the newsgroups, mailing lists and
FAQs on the Internet.

Chapter 3: Some Applications and Techniques 33

3 Some Applications and Techniques

In this chapter, we look at a number of self-contained scripts, with an emphasis on concise
networking. Along the way, we work towards creating building blocks that encapsulate often
needed functions of the networking world, show new techniques that broaden the scope of
problems that can be solved with gawk, and explore leading edge technology that may shape
the future of networking.

We often refer to the site-independent core of the server that we built in Section 2.10
[A Simple Web Server], page 26. When building new and nontrivial servers, we always
copy this building block and append new instances of the two functions SetUpServer and
HandleGET.

This makes a lot of sense, since this scheme of event-driven execution provides gawk with
an interface to the most widely accepted standard for GUIs: the web browser. Now, gawk
can rival even Tcl/Tk.

Tcl and gawk have much in common. Both are simple scripting languages that allow
us to quickly solve problems with short programs. But Tcl has Tk on top of it, and gawk
had nothing comparable up to now. While Tcl needs a large and ever-changing library (Tk,
which was bound to the X Window System until recently), gawk needs just the networking
interface and some kind of browser on the client’s side. Besides better portability, the most
important advantage of this approach (embracing well-established standards such HTTP
and HTML) is that we do not need to change the language. We let others do the work of
fighting over protocols and standards. We can use HTML, JavaScript, VRML, or whatever
else comes along to do our work.

3.1 PANIC: An Emergency Web Server

At first glance, the "Hello, world" example in Section 2.8 [A Primitive Web Service],
page 18, seems useless. By adding just a few lines, we can turn it into something useful.

The PANIC program tells everyone who connects that the local site is not working.
When a web server breaks down, it makes a difference if customers get a strange “network
unreachable” message, or a short message telling them that the server has a problem. In
such an emergency, the hard disk and everything on it (including the regular web service)
may be unavailable. Rebooting the web server off a diskette makes sense in this setting.

To use the PANIC program as an emergency web server, all you need are the gawk
executable and the program below on a diskette. By default, it connects to port 8080. A
different value may be supplied on the command line:

BEGIN {
RS = ORS = "\r\n"
if (MyPort == 0) MyPort = 8080
HttpService = "/inet/tcp/" MyPort "/0/0"
Hello = "<HTML><HEAD><TITLE>Out Of Service</TITLE>" \

"</HEAD><BODY><H1>" \
"This site is temporarily out of service." \
"</H1></BODY></HTML>"

Len = length(Hello) + length(ORS)
while ("awk" != "complex") {

34 TCP/IP Internetworking With gawk

print "HTTP/1.0 200 OK" |& HttpService
print "Content-Length: " Len ORS |& HttpService
print Hello |& HttpService
while ((HttpService |& getline) > 0)

continue;
close(HttpService)

}
}

3.2 GETURL: Retrieving Web Pages

GETURL is a versatile building block for shell scripts that need to retrieve files from
the Internet. It takes a web address as a command-line parameter and tries to retrieve the
contents of this address. The contents are printed to standard output, while the header
is printed to ‘/dev/stderr’. A surrounding shell script could analyze the contents and
extract the text or the links. An ASCII browser could be written around GETURL. But
more interestingly, web robots are straightforward to write on top of GETURL. On the
Internet, you can find several programs of the same name that do the same job. They are
usually much more complex internally and at least 10 times longer.

At first, GETURL checks if it was called with exactly one web address. Then, it checks
if the user chose to use a special proxy server whose name is handed over in a variable.
By default, it is assumed that the local machine serves as proxy. GETURL uses the GET
method by default to access the web page. By handing over the name of a different method
(such as HEAD), it is possible to choose a different behavior. With the HEAD method, the
user does not receive the body of the page content, but does receive the header:

BEGIN {
if (ARGC != 2) {
print "GETURL - retrieve Web page via HTTP 1.0"
print "IN:\n the URL as a command-line parameter"
print "PARAM(S):\n -v Proxy=MyProxy"
print "OUT:\n the page content on stdout"
print " the page header on stderr"
print "JK 16.05.1997"
print "ADR 13.08.2000"
exit

}
URL = ARGV[1]; ARGV[1] = ""
if (Proxy == "") Proxy = "127.0.0.1"
if (ProxyPort == 0) ProxyPort = 80
if (Method == "") Method = "GET"
HttpService = "/inet/tcp/0/" Proxy "/" ProxyPort
ORS = RS = "\r\n\r\n"
print Method " " URL " HTTP/1.0" |& HttpService
HttpService |& getline Header
print Header > "/dev/stderr"
while ((HttpService |& getline) > 0)
printf "%s", $0

close(HttpService)

Chapter 3: Some Applications and Techniques 35

}

This program can be changed as needed, but be careful with the last lines. Make sure
transmission of binary data is not corrupted by additional line breaks. Even as it is now,
the byte sequence "\r\n\r\n" would disappear if it were contained in binary data. Don’t
get caught in a trap when trying a quick fix on this one.

3.3 REMCONF: Remote Configuration of Embedded
Systems

Today, you often find powerful processors in embedded systems. Dedicated network
routers and controllers for all kinds of machinery are examples of embedded systems. Pro-
cessors like the Intel 80x86 or the AMD Elan are able to run multitasking operating systems,
such as XINU or GNU/Linux in embedded PCs. These systems are small and usually do
not have a keyboard or a display. Therefore it is difficult to set up their configuration.
There are several widespread ways to set them up:
• DIP switches
• Read Only Memories such as EPROMs
• Serial lines or some kind of keyboard
• Network connections via telnet or SNMP
• HTTP connections with HTML GUIs

In this section, we look at a solution that uses HTTP connections to control variables
of an embedded system that are stored in a file. Since embedded systems have tight limits
on resources like memory, it is difficult to employ advanced techniques such as SNMP
and HTTP servers. gawk fits in quite nicely with its single executable which needs just
a short script to start working. The following program stores the variables in a file, and
a concurrent process in the embedded system may read the file. The program uses the
site-independent part of the simple web server that we developed in Section 2.9 [A Web
Service with Interaction], page 19. As mentioned there, all we have to do is to write two
new procedures SetUpServer and HandleGET:

function SetUpServer() {
TopHeader = "<HTML><title>Remote Configuration</title>"
TopDoc = "<BODY>\
<h2>Please choose one of the following actions:</h2>\
\
About this server\
Read Configuration\
Check Configuration\
Change Configuration\
Save Configuration\

"
TopFooter = "</BODY></HTML>"
if (ConfigFile == "") ConfigFile = "config.asc"

}

The function SetUpServer initializes the top level HTML texts as usual. It also initializes
the name of the file that contains the configuration parameters and their values. In case

36 TCP/IP Internetworking With gawk

the user supplies a name from the command line, that name is used. The file is expected
to contain one parameter per line, with the name of the parameter in column one and the
value in column two.

The function HandleGET reflects the structure of the menu tree as usual. The first menu
choice tells the user what this is all about. The second choice reads the configuration file
line by line and stores the parameters and their values. Notice that the record separator for
this file is "\n", in contrast to the record separator for HTTP. The third menu choice builds
an HTML table to show the contents of the configuration file just read. The fourth choice
does the real work of changing parameters, and the last one just saves the configuration
into a file:

function HandleGET() {
if(MENU[2] == "AboutServer") {
Document = "This is a GUI for remote configuration of an\
embedded system. It is is implemented as one GAWK script."

} else if (MENU[2] == "ReadConfig") {
RS = "\n"
while ((getline < ConfigFile) > 0)

config[$1] = $2;
close(ConfigFile)
RS = "\r\n"
Document = "Configuration has been read."

} else if (MENU[2] == "CheckConfig") {
Document = "<TABLE BORDER=1 CELLPADDING=5>"
for (i in config)
Document = Document "<TR><TD>" i "</TD>" \
"<TD>" config[i] "</TD></TR>"

Document = Document "</TABLE>"
} else if (MENU[2] == "ChangeConfig") {
if ("Param" in GETARG) { # any parameter to set?
if (GETARG["Param"] in config) { # is parameter valid?
config[GETARG["Param"]] = GETARG["Value"]
Document = (GETARG["Param"] " = " GETARG["Value"] ".")

} else {
Document = "Parameter " GETARG["Param"] " is invalid."

}
} else {
Document = "<FORM method=GET><h4>Change one parameter</h4>\
<TABLE BORDER CELLPADDING=5>\
<TR><TD>Parameter</TD><TD>Value</TD></TR>\
<TR><TD><input type=text name=Param value=\"\" size=20></TD>\

<TD><input type=text name=Value value=\"\" size=40></TD>\
</TR></TABLE><input type=submit value=\"Set\"></FORM>"

}
} else if (MENU[2] == "SaveConfig") {
for (i in config)
printf("%s %s\n", i, config[i]) > ConfigFile

close(ConfigFile)
Document = "Configuration has been saved."

Chapter 3: Some Applications and Techniques 37

}
}

We could also view the configuration file as a database. From this point of view, the
previous program acts like a primitive database server. Real SQL database systems also
make a service available by providing a TCP port that clients can connect to. But the
application level protocols they use are usually proprietary and also change from time to
time. This is also true for the protocol that MiniSQL uses.

3.4 URLCHK: Look for Changed Web Pages

Most people who make heavy use of Internet resources have a large bookmark file with
pointers to interesting web sites. It is impossible to regularly check by hand if any of these
sites have changed. A program is needed to automatically look at the headers of web pages
and tell which ones have changed. URLCHK does the comparison after using GETURL
with the HEAD method to retrieve the header.

Like GETURL, this program first checks that it is called with exactly one command-line
parameter. URLCHK also takes the same command-line variables Proxy and ProxyPort
as GETURL, because these variables are handed over to GETURL for each URL that gets
checked. The one and only parameter is the name of a file that contains one line for each
URL. In the first column, we find the URL, and the second and third columns hold the
length of the URL’s body when checked for the two last times. Now, we follow this plan:
1. Read the URLs from the file and remember their most recent lengths
2. Delete the contents of the file
3. For each URL, check its new length and write it into the file
4. If the most recent and the new length differ, tell the user

It may seem a bit peculiar to read the URLs from a file together with their two most
recent lengths, but this approach has several advantages. You can call the program again
and again with the same file. After running the program, you can regenerate the changed
URLs by extracting those lines that differ in their second and third columns:

BEGIN {
if (ARGC != 2) {
print "URLCHK - check if URLs have changed"
print "IN:\n the file with URLs as a command-line parameter"
print " file contains URL, old length, new length"
print "PARAMS:\n -v Proxy=MyProxy -v ProxyPort=8080"
print "OUT:\n same as file with URLs"
print "JK 02.03.1998"
exit

}
URLfile = ARGV[1]; ARGV[1] = ""
if (Proxy != "") Proxy = " -v Proxy=" Proxy
if (ProxyPort != "") ProxyPort = " -v ProxyPort=" ProxyPort
while ((getline < URLfile) > 0)

Length[$1] = $3 + 0
close(URLfile) # now, URLfile is read in and can be updated
GetHeader = "gawk " Proxy ProxyPort " -v Method=\"HEAD\" -f geturl.awk "

38 TCP/IP Internetworking With gawk

for (i in Length) {
GetThisHeader = GetHeader i " 2>&1"
while ((GetThisHeader | getline) > 0)
if (toupper($0) ~ /CONTENT-LENGTH/) NewLength = $2 + 0

close(GetThisHeader)
print i, Length[i], NewLength > URLfile
if (Length[i] != NewLength) # report only changed URLs
print i, Length[i], NewLength

}
close(URLfile)

}

Another thing that may look strange is the way GETURL is called. Before calling
GETURL, we have to check if the proxy variables need to be passed on. If so, we prepare
strings that will become part of the command line later. In GetHeader, we store these strings
together with the longest part of the command line. Later, in the loop over the URLs,
GetHeader is appended with the URL and a redirection operator to form the command
that reads the URL’s header over the Internet. GETURL always produces the headers over
‘/dev/stderr’. That is the reason why we need the redirection operator to have the header
piped in.

This program is not perfect because it assumes that changing URLs results in changed
lengths, which is not necessarily true. A more advanced approach is to look at some
other header line that holds time information. But, as always when things get a bit more
complicated, this is left as an exercise to the reader.

3.5 WEBGRAB: Extract Links from a Page

Sometimes it is necessary to extract links from web pages. Browsers do it, web robots
do it, and sometimes even humans do it. Since we have a tool like GETURL at hand, we
can solve this problem with some help from the Bourne shell:

BEGIN { RS = "http://[#%&\\+\\-\\./0-9\\:;\\?A-Z_a-z\\~]*" }
RT != "" {

command = ("gawk -v Proxy=MyProxy -f geturl.awk " RT \
" > doc" NR ".html")

print command
}

Notice that the regular expression for URLs is rather crude. A precise regular expression
is much more complex. But this one works rather well. One problem is that it is unable to
find internal links of an HTML document. Another problem is that ‘ftp’, ‘telnet’, ‘news’,
‘mailto’, and other kinds of links are missing in the regular expression. However, it is
straightforward to add them, if doing so is necessary for other tasks.

This program reads an HTML file and prints all the HTTP links that it finds. It relies
on gawk’s ability to use regular expressions as record separators. With RS set to a regular
expression that matches links, the second action is executed each time a non-empty link is
found. We can find the matching link itself in RT.

The action could use the system function to let another GETURL retrieve the page,
but here we use a different approach. This simple program prints shell commands that can

Chapter 3: Some Applications and Techniques 39

be piped into sh for execution. This way it is possible to first extract the links, wrap shell
commands around them, and pipe all the shell commands into a file. After editing the file,
execution of the file retrieves exactly those files that we really need. In case we do not want
to edit, we can retrieve all the pages like this:

gawk -f geturl.awk http://www.suse.de | gawk -f webgrab.awk | sh

After this, you will find the contents of all referenced documents in files named
‘doc*.html’ even if they do not contain HTML code. The most annoying thing is that we
always have to pass the proxy to GETURL. If you do not like to see the headers of the web
pages appear on the screen, you can redirect them to ‘/dev/null’. Watching the headers
appear can be quite interesting, because it reveals interesting details such as which web
server the companies use. Now, it is clear how the clever marketing people use web robots
to determine the market shares of Microsoft and Netscape in the web server market.

Port 80 of any web server is like a small hole in a repellent firewall. After attaching a
browser to port 80, we usually catch a glimpse of the bright side of the server (its home
page). With a tool like GETURL at hand, we are able to discover some of the more
concealed or even “indecent” services (i.e., lacking conformity to standards of quality). It
can be exciting to see the fancy CGI scripts that lie there, revealing the inner workings of
the server, ready to be called:

• With a command such as:

gawk -f geturl.awk http://any.host.on.the.net/cgi-bin/

some servers give you a directory listing of the CGI files. Knowing the names, you can
try to call some of them and watch for useful results. Sometimes there are executables
in such directories (such as Perl interpreters) that you may call remotely. If there
are subdirectories with configuration data of the web server, this can also be quite
interesting to read.

• The well-known Apache web server usually has its CGI files in the directory ‘/cgi-bin’.
There you can often find the scripts ‘test-cgi’ and ‘printenv’. Both tell you some
things about the current connection and the installation of the web server. Just call:

gawk -f geturl.awk http://any.host.on.the.net/cgi-bin/test-cgi
gawk -f geturl.awk http://any.host.on.the.net/cgi-bin/printenv

• Sometimes it is even possible to retrieve system files like the web server’s log file—
possibly containing customer data—or even the file ‘/etc/passwd’. (We don’t recom-
mend this!)

Caution: Although this may sound funny or simply irrelevant, we are talking about
severe security holes. Try to explore your own system this way and make sure that none of
the above reveals too much information about your system.

40 TCP/IP Internetworking With gawk

3.6 STATIST: Graphing a Statistical Distribution

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-10 -5 0 5 10

p(m1=m2) =0.0863798346775753

p(v1=v2) =0.31647637745891

sample 1
sample 2

In the HTTP server examples we’ve shown thus far, we never present an image to the
browser and its user. Presenting images is one task. Generating images that reflect some
user input and presenting these dynamically generated images is another. In this section,
we use GNUPlot for generating ‘.png’, ‘.ps’, or ‘.gif’ files.1

The program we develop takes the statistical parameters of two samples and computes
the t-test statistics. As a result, we get the probabilities that the means and the variances of
both samples are the same. In order to let the user check plausibility, the program presents
an image of the distributions. The statistical computation follows Numerical Recipes in
C: The Art of Scientific Computing by William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. Since gawk does not have a built-in function for the
computation of the beta function, we use the ibeta function of GNUPlot. As a side effect,
we learn how to use GNUPlot as a sophisticated calculator. The comparison of means is
done as in tutest, paragraph 14.2, page 613, and the comparison of variances is done as in
ftest, page 611 in Numerical Recipes.

1 Due to licensing problems, the default installation of GNUPlot disables the generation of ‘.gif’ files. If
your installed version does not accept ‘set term gif’, just download and install the most recent version
of GNUPlot and the GD library (http://www.boutell.com/gd/) by Thomas Boutell. Otherwise you
still have the chance to generate some ASCII-art style images with GNUPlot by using ‘set term dumb’.
(We tried it and it worked.)

Chapter 3: Some Applications and Techniques 41

As usual, we take the site-independent code for servers and append our own functions
SetUpServer and HandleGET:

function SetUpServer() {
TopHeader = "<HTML><title>Statistics with GAWK</title>"
TopDoc = "<BODY>\
<h2>Please choose one of the following actions:</h2>\
\
About this server\
Enter Parameters\

"
TopFooter = "</BODY></HTML>"
GnuPlot = "gnuplot 2>&1"
m1=m2=0; v1=v2=1; n1=n2=10

}

Here, you see the menu structure that the user sees. Later, we will see how the program
structure of the HandleGET function reflects the menu structure. What is missing here is
the link for the image we generate. In an event-driven environment, request, generation,
and delivery of images are separated.

Notice the way we initialize the GnuPlot command string for the pipe. By default, GNU-
Plot outputs the generated image via standard output, as well as the results of print(ed)
calculations via standard error. The redirection causes standard error to be mixed into
standard output, enabling us to read results of calculations with getline. By initializing
the statistical parameters with some meaningful defaults, we make sure the user gets an
image the first time he uses the program.

Following is the rather long function HandleGET, which implements the contents of this
service by reacting to the different kinds of requests from the browser. Before you start
playing with this script, make sure that your browser supports JavaScript and that it also
has this option switched on. The script uses a short snippet of JavaScript code for delayed
opening of a window with an image. A more detailed explanation follows:

function HandleGET() {
if(MENU[2] == "AboutServer") {
Document = "This is a GUI for a statistical computation.\
It compares means and variances of two distributions.\
It is implemented as one GAWK script and uses GNUPLOT."

} else if (MENU[2] == "EnterParameters") {
Document = ""
if ("m1" in GETARG) { # are there parameters to compare?
Document = Document "<SCRIPT LANGUAGE=\"JavaScript\">\
setTimeout(\"window.open(\\\"" MyPrefix "/Image" systime()\
"\\\",\\\"dist\\\", \\\"status=no\\\");\", 1000); </SCRIPT>"

m1 = GETARG["m1"]; v1 = GETARG["v1"]; n1 = GETARG["n1"]
m2 = GETARG["m2"]; v2 = GETARG["v2"]; n2 = GETARG["n2"]
t = (m1-m2)/sqrt(v1/n1+v2/n2)
df = (v1/n1+v2/n2)*(v1/n1+v2/n2)/((v1/n1)*(v1/n1)/(n1-1) \

+ (v2/n2)*(v2/n2) /(n2-1))
if (v1>v2) {

f = v1/v2

42 TCP/IP Internetworking With gawk

df1 = n1 - 1
df2 = n2 - 1

} else {
f = v2/v1
df1 = n2 - 1
df2 = n1 - 1

}
print "pt=ibeta(" df/2 ",0.5," df/(df+t*t) ")" |& GnuPlot
print "pF=2.0*ibeta(" df2/2 "," df1/2 "," \

df2/(df2+df1*f) ")" |& GnuPlot
print "print pt, pF" |& GnuPlot
RS="\n"; GnuPlot |& getline; RS="\r\n" # $1 is pt, $2 is pF
print "invsqrt2pi=1.0/sqrt(2.0*pi)" |& GnuPlot
print "nd(x)=invsqrt2pi/sd*exp(-0.5*((x-mu)/sd)**2)" |& GnuPlot
print "set term png small color" |& GnuPlot
#print "set term postscript color" |& GnuPlot
#print "set term gif medium size 320,240" |& GnuPlot
print "set yrange[-0.3:]" |& GnuPlot
print "set label ’p(m1=m2) =" $1 "’ at 0,-0.1 left" |& GnuPlot
print "set label ’p(v1=v2) =" $2 "’ at 0,-0.2 left" |& GnuPlot
print "plot mu=" m1 ",sd=" sqrt(v1) ", nd(x) title ’sample 1’,\
mu=" m2 ",sd=" sqrt(v2) ", nd(x) title ’sample 2’" |& GnuPlot

print "quit" |& GnuPlot
GnuPlot |& getline Image
while ((GnuPlot |& getline) > 0)

Image = Image RS $0
close(GnuPlot)

}
Document = Document "\
<h3>Do these samples have the same Gaussian distribution?</h3>\
<FORM METHOD=GET> <TABLE BORDER CELLPADDING=5>\
<TR>\
<TD>1. Mean </TD>
<TD><input type=text name=m1 value=" m1 " size=8></TD>\
<TD>1. Variance</TD>
<TD><input type=text name=v1 value=" v1 " size=8></TD>\
<TD>1. Count </TD>
<TD><input type=text name=n1 value=" n1 " size=8></TD>\
</TR><TR>\
<TD>2. Mean </TD>
<TD><input type=text name=m2 value=" m2 " size=8></TD>\
<TD>2. Variance</TD>
<TD><input type=text name=v2 value=" v2 " size=8></TD>\
<TD>2. Count </TD>
<TD><input type=text name=n2 value=" n2 " size=8></TD>\
</TR> <input type=submit value=\"Compute\">\
</TABLE></FORM>
"

} else if (MENU[2] ~ "Image") {
Reason = "OK" ORS "Content-type: image/png"

Chapter 3: Some Applications and Techniques 43

#Reason = "OK" ORS "Content-type: application/x-postscript"
#Reason = "OK" ORS "Content-type: image/gif"
Header = Footer = ""
Document = Image

}
}

As usual, we give a short description of the service in the first menu choice. The third
menu choice shows us that generation and presentation of an image are two separate actions.
While the latter takes place quite instantly in the third menu choice, the former takes place
in the much longer second choice. Image data passes from the generating action to the
presenting action via the variable Image that contains a complete ‘.png’ image, which is
otherwise stored in a file. If you prefer ‘.ps’ or ‘.gif’ images over the default ‘.png’ images,
you may select these options by uncommenting the appropriate lines. But remember to
do so in two places: when telling GNUPlot which kind of images to generate, and when
transmitting the image at the end of the program.

Looking at the end of the program, the way we pass the ‘Content-type’ to the browser
is a bit unusual. It is appended to the ‘OK’ of the first header line to make sure the type
information becomes part of the header. The other variables that get transmitted across
the network are made empty, because in this case we do not have an HTML document to
transmit, but rather raw image data to contain in the body.

Most of the work is done in the second menu choice. It starts with a strange JavaScript
code snippet. When first implementing this server, we used a short "<IMG SRC=" MyPrefix
"/Image>" here. But then browsers got smarter and tried to improve on speed by requesting
the image and the HTML code at the same time. When doing this, the browser tries to
build up a connection for the image request while the request for the HTML text is not yet
completed. The browser tries to connect to the gawk server on port 8080 while port 8080
is still in use for transmission of the HTML text. The connection for the image cannot be
built up, so the image appears as “broken” in the browser window. We solved this problem
by telling the browser to open a separate window for the image, but only after a delay of
1000 milliseconds. By this time, the server should be ready for serving the next request.

But there is one more subtlety in the JavaScript code. Each time the JavaScript code
opens a window for the image, the name of the image is appended with a timestamp
(systime). Why this constant change of name for the image? Initially, we always named
the image Image, but then the Netscape browser noticed the name had not changed since
the previous request and displayed the previous image (caching behavior). The server
core is implemented so that browsers are told not to cache anything. Obviously HTTP
requests do not always work as expected. One way to circumvent the cache of such overly
smart browsers is to change the name of the image with each request. These three lines of
JavaScript caused us a lot of trouble.

The rest can be broken down into two phases. At first, we check if there are statistical
parameters. When the program is first started, there usually are no parameters because
it enters the page coming from the top menu. Then, we only have to present the user
a form that he can use to change statistical parameters and submit them. Subsequently,
the submission of the form causes the execution of the first phase because now there are
parameters to handle.

44 TCP/IP Internetworking With gawk

Now that we have parameters, we know there will be an image available. Therefore we
insert the JavaScript code here to initiate the opening of the image in a separate window.
Then, we prepare some variables that will be passed to GNUPlot for calculation of the
probabilities. Prior to reading the results, we must temporarily change RS because GNUPlot
separates lines with newlines. After instructing GNUPlot to generate a ‘.png’ (or ‘.ps’ or
‘.gif’) image, we initiate the insertion of some text, explaining the resulting probabilities.
The final ‘plot’ command actually generates the image data. This raw binary has to be
read in carefully without adding, changing, or deleting a single byte. Hence the unusual
initialization of Image and completion with a while loop.

When using this server, it soon becomes clear that it is far from being perfect. It mixes
source code of six scripting languages or protocols:
• GNU awk implements a server for the protocol:
• HTTP which transmits:
• HTML text which contains a short piece of:
• JavaScript code opening a separate window.
• A Bourne shell script is used for piping commands into:
• GNUPlot to generate the image to be opened.

After all this work, the GNUPlot image opens in the JavaScript window where it can be
viewed by the user.

It is probably better not to mix up so many different languages. The result is not very
readable. Furthermore, the statistical part of the server does not take care of invalid input.
Among others, using negative variances will cause invalid results.

3.7 MAZE: Walking Through a Maze In Virtual Reality

In the long run, every program becomes rococo, and then rubble.
Alan Perlis

By now, we know how to present arbitrary ‘Content-type’s to a browser. In this section,
our server will present a 3D world to our browser. The 3D world is described in a scene
description language (VRML, Virtual Reality Modeling Language) that allows us to travel
through a perspective view of a 2D maze with our browser. Browsers with a VRML plugin
enable exploration of this technology. We could do one of those boring ‘Hello world’
examples here, that are usually presented when introducing novices to VRML. If you have
never written any VRML code, have a look at the VRML FAQ. Presenting a static VRML
scene is a bit trivial; in order to expose gawk’s new capabilities, we will present a dynamically
generated VRML scene. The function SetUpServer is very simple because it only sets the
default HTML page and initializes the random number generator. As usual, the surrounding
server lets you browse the maze.

function SetUpServer() {
TopHeader = "<HTML><title>Walk through a maze</title>"
TopDoc = "\
<h2>Please choose one of the following actions:</h2>\
\
About this server\
Watch a simple VRML scene\

Chapter 3: Some Applications and Techniques 45

"
TopFooter = "</HTML>"
srand()

}

The function HandleGET is a bit longer because it first computes the maze and afterwards
generates the VRML code that is sent across the network. As shown in the STATIST
example (see Section 3.6 [STATIST], page 40), we set the type of the content to VRML
and then store the VRML representation of the maze as the page content. We assume that
the maze is stored in a 2D array. Initially, the maze consists of walls only. Then, we add
an entry and an exit to the maze and let the rest of the work be done by the function
MakeMaze. Now, only the wall fields are left in the maze. By iterating over the these fields,
we generate one line of VRML code for each wall field.

function HandleGET() {
if (MENU[2] == "AboutServer") {
Document = "If your browser has a VRML 2 plugin,\
this server shows you a simple VRML scene."

} else if (MENU[2] == "VRMLtest") {
XSIZE = YSIZE = 11 # initially, everything is wall
for (y = 0; y < YSIZE; y++)

for (x = 0; x < XSIZE; x++)
Maze[x, y] = "#"

delete Maze[0, 1] # entry is not wall
delete Maze[XSIZE-1, YSIZE-2] # exit is not wall
MakeMaze(1, 1)
Document = "\

#VRML V2.0 utf8\n\
Group {\n\
children [\n\
PointLight {\n\
ambientIntensity 0.2\n\
color 0.7 0.7 0.7\n\
location 0.0 8.0 10.0\n\

}\n\
DEF B1 Background {\n\
skyColor [0 0 0, 1.0 1.0 1.0]\n\
skyAngle 1.6\n\
groundColor [1 1 1, 0.8 0.8 0.8, 0.2 0.2 0.2]\n\
groundAngle [1.2 1.57]\n\

}\n\
DEF Wall Shape {\n\
geometry Box {size 1 1 1}\n\
appearance Appearance { material Material { diffuseColor 0 0 1 } }\n\

}\n\
DEF Entry Viewpoint {\n\
position 0.5 1.0 5.0\n\
orientation 0.0 0.0 -1.0 0.52\n\

}\n"
for (i in Maze) {

46 TCP/IP Internetworking With gawk

split(i, t, SUBSEP)
Document = Document " Transform { translation "
Document = Document t[1] " 0 -" t[2] " children USE Wall }\n"

}
Document = Document "] # end of group for world\n}"
Reason = "OK" ORS "Content-type: model/vrml"
Header = Footer = ""

}
}

Finally, we have a look at MakeMaze, the function that generates the Maze array. When
entered, this function assumes that the array has been initialized so that each element
represents a wall element and the maze is initially full of wall elements. Only the entrance
and the exit of the maze should have been left free. The parameters of the function tell
us which element must be marked as not being a wall. After this, we take a look at
the four neighbouring elements and remember which we have already treated. Of all the
neighbouring elements, we take one at random and walk in that direction. Therefore, the
wall element in that direction has to be removed and then, we call the function recursively
for that element. The maze is only completed if we iterate the above procedure for all
neighbouring elements (in random order) and for our present element by recursively calling
the function for the present element. This last iteration could have been done in a loop,
but it is done much simpler recursively.

Notice that elements with coordinates that are both odd are assumed to be on our way
through the maze and the generating process cannot terminate as long as there is such an
element not being deleted. All other elements are potentially part of the wall.

function MakeMaze(x, y) {
delete Maze[x, y] # here we are, we have no wall here
p = 0 # count unvisited fields in all directions
if (x-2 SUBSEP y in Maze) d[p++] = "-x"
if (x SUBSEP y-2 in Maze) d[p++] = "-y"
if (x+2 SUBSEP y in Maze) d[p++] = "+x"
if (x SUBSEP y+2 in Maze) d[p++] = "+y"
if (p>0) { # if there are univisited fields, go there
p = int(p*rand()) # choose one unvisited field at random
if (d[p] == "-x") { delete Maze[x - 1, y]; MakeMaze(x - 2, y)
} else if (d[p] == "-y") { delete Maze[x, y - 1]; MakeMaze(x, y - 2)
} else if (d[p] == "+x") { delete Maze[x + 1, y]; MakeMaze(x + 2, y)
} else if (d[p] == "+y") { delete Maze[x, y + 1]; MakeMaze(x, y + 2)
} # we are back from recursion
MakeMaze(x, y); # try again while there are unvisited fields

}
}

3.8 MOBAGWHO: a Simple Mobile Agent

There are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies.
C. A. R. Hoare

Chapter 3: Some Applications and Techniques 47

A mobile agent is a program that can be dispatched from a computer and transported
to a remote server for execution. This is called migration, which means that a process
on another system is started that is independent from its originator. Ideally, it wanders
through a network while working for its creator or owner. In places like the UMBC Agent
Web, people are quite confident that (mobile) agents are a software engineering paradigm
that enables us to significantly increase the efficiency of our work. Mobile agents could
become the mediators between users and the networking world. For an unbiased view at
this technology, see the remarkable paper Mobile Agents: Are they a good idea?.2

When trying to migrate a process from one system to another, a server process is needed
on the receiving side. Depending on the kind of server process, several ways of implemen-
tation come to mind. How the process is implemented depends upon the kind of server
process:

• HTTP can be used as the protocol for delivery of the migrating process. In this
case, we use a common web server as the receiving server process. A universal CGI
script mediates between migrating process and web server. Each server willing to
accept migrating agents makes this universal service available. HTTP supplies the
POST method to transfer some data to a file on the web server. When a CGI script
is called remotely with the POST method instead of the usual GET method, data is
transmitted from the client process to the standard input of the server’s CGI script.
So, to implement a mobile agent, we must not only write the agent program to start
on the client side, but also the CGI script to receive the agent on the server side.

• The PUT method can also be used for migration. HTTP does not require a CGI script
for migration via PUT. However, with common web servers there is no advantage to
this solution, because web servers such as Apache require explicit activation of a special
PUT script.

• Agent Tcl pursues a different course; it relies on a dedicated server process with a
dedicated protocol specialized for receiving mobile agents.

Our agent example abuses a common web server as a migration tool. So, it needs a
universal CGI script on the receiving side (the web server). The receiving script is activated
with a POST request when placed into a location like ‘/httpd/cgi-bin/PostAgent.sh’.
Make sure that the server system uses a version of gawk that supports network access
(Version 3.1 or later; verify with ‘gawk --version’).

#!/bin/sh
MobAg=/tmp/MobileAgent.$$
direct script to mobile agent file
cat > $MobAg
execute agent concurrently
gawk -f $MobAg $MobAg > /dev/null &
HTTP header, terminator and body
gawk ’BEGIN { print "\r\nAgent started" }’
rm $MobAg # delete script file of agent

By making its process id ($$) part of the unique file name, the script avoids conflicts
between concurrent instances of the script. First, all lines from standard input (the mobile

2 http://www.research.ibm.com/massive/mobag.ps

48 TCP/IP Internetworking With gawk

agent’s source code) are copied into this unique file. Then, the agent is started as a concur-
rent process and a short message reporting this fact is sent to the submitting client. Finally,
the script file of the mobile agent is removed because it is no longer needed. Although it is
a short script, there are several noteworthy points:

Security There is none. In fact, the CGI script should never be made available on a
server that is part of the Internet because everyone would be allowed to execute
arbitrary commands with it. This behavior is acceptable only when performing
rapid prototyping.

Self-Reference
Each migrating instance of an agent is started in a way that enables it to
read its own source code from standard input and use the code for subsequent
migrations. This is necessary because it needs to treat the agent’s code as data
to transmit. gawk is not the ideal language for such a job. Lisp and Tcl are
more suitable because they do not make a distinction between program code
and data.

Independence
After migration, the agent is not linked to its former home in any way. By
reporting ‘Agent started’, it waves “Goodbye” to its origin. The originator
may choose to terminate or not.

The originating agent itself is started just like any other command-line script, and reports
the results on standard output. By letting the name of the original host migrate with the
agent, the agent that migrates to a host far away from its origin can report the result back
home. Having arrived at the end of the journey, the agent establishes a connection and
reports the results. This is the reason for determining the name of the host with ‘uname
-n’ and storing it in MyOrigin for later use. We may also set variables with the ‘-v’ option
from the command line. This interactivity is only of importance in the context of starting
a mobile agent; therefore this BEGIN pattern and its action do not take part in migration:

BEGIN {
if (ARGC != 2) {
print "MOBAG - a simple mobile agent"
print "CALL:\n gawk -f mobag.awk mobag.awk"
print "IN:\n the name of this script as a command-line parameter"
print "PARAM:\n -v MyOrigin=myhost.com"
print "OUT:\n the result on stdout"
print "JK 29.03.1998 01.04.1998"
exit

}
if (MyOrigin == "") {

"uname -n" | getline MyOrigin
close("uname -n")

}
}

Since gawk cannot manipulate and transmit parts of the program directly, the source
code is read and stored in strings. Therefore, the program scans itself for the beginning and
the ending of functions. Each line in between is appended to the code string until the end

Chapter 3: Some Applications and Techniques 49

of the function has been reached. A special case is this part of the program itself. It is not
a function. Placing a similar framework around it causes it to be treated like a function.
Notice that this mechanism works for all the functions of the source code, but it cannot
guarantee that the order of the functions is preserved during migration:

#ReadMySelf
/^function / { FUNC = $2 }
/^END/ || /^#ReadMySelf/ { FUNC = $1 }
FUNC != "" { MOBFUN[FUNC] = MOBFUN[FUNC] RS $0 }
(FUNC != "") && (/^}/ || /^#EndOfMySelf/) \

{ FUNC = "" }
#EndOfMySelf

The web server code in Section 2.9 [A Web Service with Interaction], page 19, was first
developed as a site-independent core. Likewise, the gawk-based mobile agent starts with an
agent-independent core, to which can be appended application-dependent functions. What
follows is the only application-independent function needed for the mobile agent:

function migrate(Destination, MobCode, Label) {
MOBVAR["Label"] = Label
MOBVAR["Destination"] = Destination
RS = ORS = "\r\n"
HttpService = "/inet/tcp/0/" Destination
for (i in MOBFUN)

MobCode = (MobCode "\n" MOBFUN[i])
MobCode = MobCode "\n\nBEGIN {"
for (i in MOBVAR)

MobCode = (MobCode "\n MOBVAR[\"" i "\"] = \"" MOBVAR[i] "\"")
MobCode = MobCode "\n}\n"
print "POST /cgi-bin/PostAgent.sh HTTP/1.0" |& HttpService
print "Content-length:", length(MobCode) ORS |& HttpService
printf "%s", MobCode |& HttpService
while ((HttpService |& getline) > 0)

print $0
close(HttpService)

}

The migrate function prepares the aforementioned strings containing the program code
and transmits them to a server. A consequence of this modular approach is that the migrate
function takes some parameters that aren’t needed in this application, but that will be in
future ones. Its mandatory parameter Destination holds the name (or IP address) of the
server that the agent wants as a host for its code. The optional parameter MobCode may
contain some gawk code that is inserted during migration in front of all other code. The
optional parameter Label may contain a string that tells the agent what to do in program
execution after arrival at its new home site. One of the serious obstacles in implementing
a framework for mobile agents is that it does not suffice to migrate the code. It is also
necessary to migrate the state of execution of the agent. In contrast to Agent Tcl, this
program does not try to migrate the complete set of variables. The following conventions
are used:

• Each variable in an agent program is local to the current host and does not migrate.

50 TCP/IP Internetworking With gawk

• The array MOBFUN shown above is an exception. It is handled by the function migrate
and does migrate with the application.

• The other exception is the array MOBVAR. Each variable that takes part in migration
has to be an element of this array. migrate also takes care of this.

Now it’s clear what happens to the Label parameter of the function migrate. It is
copied into MOBVAR["Label"] and travels alongside the other data. Since travelling takes
place via HTTP, records must be separated with "\r\n" in RS and ORS as usual. The code
assembly for migration takes place in three steps:
• Iterate over MOBFUN to collect all functions verbatim.
• Prepare a BEGIN pattern and put assignments to mobile variables into the action part.
• Transmission itself resembles GETURL: the header with the request and the Content-

length is followed by the body. In case there is any reply over the network, it is read
completely and echoed to standard output to avoid irritating the server.

The application-independent framework is now almost complete. What follows is the END
pattern that is executed when the mobile agent has finished reading its own code. First, it
checks whether it is already running on a remote host or not. In case initialization has not
yet taken place, it starts MyInit. Otherwise (later, on a remote host), it starts MyJob:

END {
if (ARGC != 2) exit # stop when called with wrong parameters
if (MyOrigin != "") # is this the originating host?
MyInit() # if so, initialize the application

else # we are on a host with migrated data
MyJob() # so we do our job

}

All that’s left to extend the framework into a complete application is to write two
application-specific functions: MyInit and MyJob. Keep in mind that the former is executed
once on the originating host, while the latter is executed after each migration:

function MyInit() {
MOBVAR["MyOrigin"] = MyOrigin
MOBVAR["Machines"] = "localhost/80 max/80 moritz/80 castor/80"
split(MOBVAR["Machines"], Machines) # which host is the first?
migrate(Machines[1], "", "") # go to the first host
while (("/inet/tcp/8080/0/0" |& getline) > 0) # wait for result
print $0 # print result

close("/inet/tcp/8080/0/0")
}

As mentioned earlier, this agent takes the name of its origin (MyOrigin) with it. Then,
it takes the name of its first destination and goes there for further work. Notice that this
name has the port number of the web server appended to the name of the server, because
the function migrate needs it this way to create the HttpService variable. Finally, it waits
for the result to arrive. The MyJob function runs on the remote host:

function MyJob() {
forget this host
sub(MOBVAR["Destination"], "", MOBVAR["Machines"])
MOBVAR["Result"]=MOBVAR["Result"] SUBSEP SUBSEP MOBVAR["Destination"] ":"

Chapter 3: Some Applications and Techniques 51

while (("who" | getline) > 0) # who is logged in?
MOBVAR["Result"] = MOBVAR["Result"] SUBSEP $0

close("who")
if (index(MOBVAR["Machines"], "/") > 0) { # any more machines to visit?
split(MOBVAR["Machines"], Machines) # which host is next?
migrate(Machines[1], "", "") # go there

} else { # no more machines
gsub(SUBSEP, "\n", MOBVAR["Result"]) # send result to origin
print MOBVAR["Result"] |& "/inet/tcp/0/" MOBVAR["MyOrigin"] "/8080"
close("/inet/tcp/0/" MOBVAR["MyOrigin"] "/8080")

}
}

After migrating, the first thing to do in MyJob is to delete the name of the current host
from the list of hosts to visit. Now, it is time to start the real work by appending the
host’s name to the result string, and reading line by line who is logged in on this host. A
very annoying circumstance is the fact that the elements of MOBVAR cannot hold the newline
character ("\n"). If they did, migration of this string did not work because the string didn’t
obey the syntax rule for a string in gawk. SUBSEP is used as a temporary replacement. If the
list of hosts to visit holds at least one more entry, the agent migrates to that place to go on
working there. Otherwise, we replace the SUBSEPs with a newline character in the resulting
string, and report it to the originating host, whose name is stored in MOBVAR["MyOrigin"].

3.9 STOXPRED: Stock Market Prediction As A Service

Far out in the uncharted backwaters of the unfashionable end of the Western
Spiral arm of the Galaxy lies a small unregarded yellow sun.
Orbiting this at a distance of roughly ninety-two million miles is an utterly in-
significant little blue-green planet whose ape-descendent life forms are so amaz-
ingly primitive that they still think digital watches are a pretty neat idea.
This planet has — or rather had — a problem, which was this: most of the
people living on it were unhappy for pretty much of the time. Many solutions
were suggested for this problem, but most of these were largely concerned with
the movements of small green pieces of paper, which is odd because it wasn’t the
small green pieces of paper that were unhappy.
Douglas Adams, The Hitch Hiker’s Guide to the Galaxy

Valuable services on the Internet are usually not implemented as mobile agents. There
are much simpler ways of implementing services. All Unix systems provide, for example,
the cron service. Unix system users can write a list of tasks to be done each day, each week,
twice a day, or just once. The list is entered into a file named ‘crontab’. For example, to
distribute a newsletter on a daily basis this way, use cron for calling a script each day early
in the morning.

run at 8 am on weekdays, distribute the newsletter
0 8 * * 1-5 $HOME/bin/daily.job >> $HOME/log/newsletter 2>&1

The script first looks for interesting information on the Internet, assembles it in a nice
form and sends the results via email to the customers.

The following is an example of a primitive newsletter on stock market prediction. It is
a report which first tries to predict the change of each share in the Dow Jones Industrial

52 TCP/IP Internetworking With gawk

Index for the particular day. Then it mentions some especially promising shares as well
as some shares which look remarkably bad on that day. The report ends with the usual
disclaimer which tells every child not to try this at home and hurt anybody.

Good morning Uncle Scrooge,

This is your daily stock market report for Monday, October 16, 2000.
Here are the predictions for today:

AA neutral
GE up
JNJ down
MSFT neutral
...
UTX up
DD down
IBM up
MO down
WMT up
DIS up
INTC up
MRK down
XOM down
EK down
IP down

The most promising shares for today are these:

INTC http://biz.yahoo.com/n/i/intc.html

The stock shares to avoid today are these:

EK http://biz.yahoo.com/n/e/ek.html
IP http://biz.yahoo.com/n/i/ip.html
DD http://biz.yahoo.com/n/d/dd.html
...

The script as a whole is rather long. In order to ease the pain of studying other people’s
source code, we have broken the script up into meaningful parts which are invoked one after
the other. The basic structure of the script is as follows:

BEGIN {
Init()
ReadQuotes()
CleanUp()
Prediction()
Report()
SendMail()

}

The earlier parts store data into variables and arrays which are subsequently used by
later parts of the script. The Init function first checks if the script is invoked correctly

Chapter 3: Some Applications and Techniques 53

(without any parameters). If not, it informs the user of the correct usage. What follows
are preparations for the retrieval of the historical quote data. The names of the 30 stock
shares are stored in an array name along with the current date in day, month, and year.

All users who are separated from the Internet by a firewall and have to direct their
Internet accesses to a proxy must supply the name of the proxy to this script with the ‘-v
Proxy=name’ option. For most users, the default proxy and port number should suffice.

function Init() {
if (ARGC != 1) {
print "STOXPRED - daily stock share prediction"
print "IN:\n no parameters, nothing on stdin"
print "PARAM:\n -v Proxy=MyProxy -v ProxyPort=80"
print "OUT:\n commented predictions as email"
print "JK 09.10.2000"
exit

}
Remember ticker symbols from Dow Jones Industrial Index
StockCount = split("AA GE JNJ MSFT AXP GM JPM PG BA HD KO \
SBC C HON MCD T CAT HWP MMM UTX DD IBM MO WMT DIS INTC \
MRK XOM EK IP", name);

Remember the current date as the end of the time series
day = strftime("%d")
month = strftime("%m")
year = strftime("%Y")
if (Proxy == "") Proxy = "chart.yahoo.com"
if (ProxyPort == 0) ProxyPort = 80
YahooData = "/inet/tcp/0/" Proxy "/" ProxyPort

}

There are two really interesting parts in the script. One is the function which reads the
historical stock quotes from an Internet server. The other is the one that does the actual
prediction. In the following function we see how the quotes are read from the Yahoo server.
The data which comes from the server is in CSV format (comma-separated values):

Date,Open,High,Low,Close,Volume
9-Oct-00,22.75,22.75,21.375,22.375,7888500
6-Oct-00,23.8125,24.9375,21.5625,22,10701100
5-Oct-00,24.4375,24.625,23.125,23.50,5810300

Lines contain values of the same time instant, whereas columns are separated by commas
and contain the kind of data that is described in the header (first) line. At first, gawk
is instructed to separate columns by commas (‘FS = ","’). In the loop that follows, a
connection to the Yahoo server is first opened, then a download takes place, and finally the
connection is closed. All this happens once for each ticker symbol. In the body of this loop,
an Internet address is built up as a string according to the rules of the Yahoo server. The
starting and ending date are chosen to be exactly the same, but one year apart in the past.
All the action is initiated within the printf command which transmits the request for data
to the Yahoo server.

In the inner loop, the server’s data is first read and then scanned line by line. Only
lines which have six columns and the name of a month in the first column contain relevant
data. This data is stored in the two-dimensional array quote; one dimension being time,

54 TCP/IP Internetworking With gawk

the other being the ticker symbol. During retrieval of the first stock’s data, the calendar
names of the time instances are stored in the array day because we need them later.

function ReadQuotes() {
Retrieve historical data for each ticker symbol
FS = ","
for (stock = 1; stock <= StockCount; stock++) {
URL = "http://chart.yahoo.com/table.csv?s=" name[stock] \

"&a=" month "&b=" day "&c=" year-1 \
"&d=" month "&e=" day "&f=" year \
"g=d&q=q&y=0&z=" name[stock] "&x=.csv"

printf("GET " URL " HTTP/1.0\r\n\r\n") |& YahooData
while ((YahooData |& getline) > 0) {
if (NF == 6 && $1 ~ /Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec/) {
if (stock == 1)
days[++daycount] = $1;

quote[$1, stock] = $5
}

}
close(YahooData)

}
FS = " "

}

Now that we have the data, it can be checked once again to make sure that no individual
stock is missing or invalid, and that all the stock quotes are aligned correctly. Furthermore,
we renumber the time instances. The most recent day gets day number 1 and all other days
get consecutive numbers. All quotes are rounded toward the nearest whole number in US
Dollars.

function CleanUp() {
clean up time series; eliminate incomplete data sets
for (d = 1; d <= daycount; d++) {
for (stock = 1; stock <= StockCount; stock++)
if (! ((days[d], stock) in quote))

stock = StockCount + 10
if (stock > StockCount + 1)

continue
datacount++
for (stock = 1; stock <= StockCount; stock++)
data[datacount, stock] = int(0.5 + quote[days[d], stock])

}
delete quote
delete days

}

Now we have arrived at the second really interesting part of the whole affair. What we
present here is a very primitive prediction algorithm: If a stock fell yesterday, assume it
will also fall today; if it rose yesterday, assume it will rise today. (Feel free to replace this
algorithm with a smarter one.) If a stock changed in the same direction on two consecutive
days, this is an indication which should be highlighted. Two-day advances are stored in
hot and two-day declines in avoid.

Chapter 3: Some Applications and Techniques 55

The rest of the function is a sanity check. It counts the number of correct predictions in
relation to the total number of predictions one could have made in the year before.

function Prediction() {
Predict each ticker symbol by prolonging yesterday’s trend
for (stock = 1; stock <= StockCount; stock++) {
if (data[1, stock] > data[2, stock]) {
predict[stock] = "up"

} else if (data[1, stock] < data[2, stock]) {
predict[stock] = "down"

} else {
predict[stock] = "neutral"

}
if ((data[1, stock] > data[2, stock]) && (data[2, stock] > data[3, stock]))
hot[stock] = 1

if ((data[1, stock] < data[2, stock]) && (data[2, stock] < data[3, stock]))
avoid[stock] = 1

}
Do a plausibility check: how many predictions proved correct?
for (s = 1; s <= StockCount; s++) {
for (d = 1; d <= datacount-2; d++) {
if (data[d+1, s] > data[d+2, s]) {
UpCount++

} else if (data[d+1, s] < data[d+2, s]) {
DownCount++

} else {
NeutralCount++

}
if (((data[d, s] > data[d+1, s]) && (data[d+1, s] > data[d+2, s])) ||

((data[d, s] < data[d+1, s]) && (data[d+1, s] < data[d+2, s])) ||
((data[d, s] == data[d+1, s]) && (data[d+1, s] == data[d+2, s])))

CorrectCount++
}

}
}

At this point the hard work has been done: the array predict contains the predictions
for all the ticker symbols. It is up to the function Report to find some nice words to
introduce the desired information.

function Report() {
Generate report
report = "\nThis is your daily "
report = report "stock market report for "strftime("%A, %B %d, %Y")".\n"
report = report "Here are the predictions for today:\n\n"
for (stock = 1; stock <= StockCount; stock++)
report = report "\t" name[stock] "\t" predict[stock] "\n"

for (stock in hot) {
if (HotCount++ == 0)
report = report "\nThe most promising shares for today are these:\n\n"

report = report "\t" name[stock] "\t\thttp://biz.yahoo.com/n/" \

56 TCP/IP Internetworking With gawk

tolower(substr(name[stock], 1, 1)) "/" tolower(name[stock]) ".html\n"
}
for (stock in avoid) {
if (AvoidCount++ == 0)
report = report "\nThe stock shares to avoid today are these:\n\n"

report = report "\t" name[stock] "\t\thttp://biz.yahoo.com/n/" \
tolower(substr(name[stock], 1, 1)) "/" tolower(name[stock]) ".html\n"

}
report = report "\nThis sums up to " HotCount+0 " winners and " AvoidCount+0
report = report " losers. When using this kind\nof prediction scheme for"
report = report " the 12 months which lie behind us,\nwe get " UpCount
report = report " ’ups’ and " DownCount " ’downs’ and " NeutralCount
report = report " ’neutrals’. Of all\nthese " UpCount+DownCount+NeutralCount
report = report " predictions " CorrectCount " proved correct next day.\n"
report = report "A success rate of "\

int(100*CorrectCount/(UpCount+DownCount+NeutralCount)) "%.\n"
report = report "Random choice would have produced a 33% success rate.\n"
report = report "Disclaimer: Like every other prediction of the stock\n"
report = report "market, this report is, of course, complete nonsense.\n"
report = report "If you are stupid enough to believe these predictions\n"
report = report "you should visit a doctor who can treat your ailment."

}

The function SendMail goes through the list of customers and opens a pipe to the mail
command for each of them. Each one receives an email message with a proper subject
heading and is addressed with his full name.

function SendMail() {
send report to customers
customer["uncle.scrooge@ducktown.gov"] = "Uncle Scrooge"
customer["more@utopia.org"] = "Sir Thomas More"
customer["spinoza@denhaag.nl"] = "Baruch de Spinoza"
customer["marx@highgate.uk"] = "Karl Marx"
customer["keynes@the.long.run"] = "John Maynard Keynes"
customer["bierce@devil.hell.org"] = "Ambrose Bierce"
customer["laplace@paris.fr"] = "Pierre Simon de Laplace"
for (c in customer) {
MailPipe = "mail -s ’Daily Stock Prediction Newsletter’" c
print "Good morning " customer[c] "," | MailPipe
print report "\n.\n" | MailPipe
close(MailPipe)

}
}

Be patient when running the script by hand. Retrieving the data for all the ticker
symbols and sending the emails may take several minutes to complete, depending upon
network traffic and the speed of the available Internet link. The quality of the prediction
algorithm is likely to be disappointing. Try to find a better one. Should you find one with
a success rate of more than 50%, please tell us about it! It is only for the sake of curiosity,
of course. :-)

Chapter 3: Some Applications and Techniques 57

3.10 PROTBASE: Searching Through A Protein Database

Hoare’s Law of Large Problems: Inside every large problem is a small problem
struggling to get out.

Yahoo’s database of stock market data is just one among the many large databases on the
Internet. Another one is located at NCBI (National Center for Biotechnology Information).
Established in 1988 as a national resource for molecular biology information, NCBI creates
public databases, conducts research in computational biology, develops software tools for
analyzing genome data, and disseminates biomedical information. In this section, we look
at one of NCBI’s public services, which is called BLAST (Basic Local Alignment Search
Tool).

You probably know that the information necessary for reproducing living cells is encoded
in the genetic material of the cells. The genetic material is a very long chain of four base
nucleotides. It is the order of appearance (the sequence) of nucleotides which contains the
information about the substance to be produced. Scientists in biotechnology often find a
specific fragment, determine the nucleotide sequence, and need to know where the sequence
at hand comes from. This is where the large databases enter the game. At NCBI, databases
store the knowledge about which sequences have ever been found and where they have been
found. When the scientist sends his sequence to the BLAST service, the server looks for
regions of genetic material in its database which look the most similar to the delivered
nucleotide sequence. After a search time of some seconds or minutes the server sends an
answer to the scientist. In order to make access simple, NCBI chose to offer their database
service through popular Internet protocols. There are four basic ways to use the so-called
BLAST services:
• The easiest way to use BLAST is through the web. Users may simply point their

browsers at the NCBI home page and link to the BLAST pages. NCBI provides a
stable URL that may be used to perform BLAST searches without interactive use of a
web browser. This is what we will do later in this section. A demonstration client and
a ‘README’ file demonstrate how to access this URL.

• Currently, blastcl3 is the standard network BLAST client. You can download
blastcl3 from the anonymous FTP location.

• BLAST 2.0 can be run locally as a full executable and can be used to run BLAST
searches against private local databases, or downloaded copies of the NCBI databases.
BLAST 2.0 executables may be found on the NCBI anonymous FTP server.

• The NCBI BLAST Email server is the best option for people without convenient
access to the web. A similarity search can be performed by sending a properly
formatted mail message containing the nucleotide or protein query sequence to
blast@ncbi.nlm.nih.gov. The query sequence is compared against the specified
database using the BLAST algorithm and the results are returned in an email message.
For more information on formulating email BLAST searches, you can send a message
consisting of the word “HELP” to the same address, blast@ncbi.nlm.nih.gov.

Our starting point is the demonstration client mentioned in the first option. The ‘README’
file that comes along with the client explains the whole process in a nutshell. In the rest of
this section, we first show what such requests look like. Then we show how to use gawk to
implement a client in about 10 lines of code. Finally, we show how to interpret the result
returned from the service.

58 TCP/IP Internetworking With gawk

Sequences are expected to be represented in the standard IUB/IUPAC amino acid and
nucleic acid codes, with these exceptions: lower-case letters are accepted and are mapped
into upper-case; a single hyphen or dash can be used to represent a gap of indeterminate
length; and in amino acid sequences, ‘U’ and ‘*’ are acceptable letters (see below). Before
submitting a request, any numerical digits in the query sequence should either be removed
or replaced by appropriate letter codes (e.g., ‘N’ for unknown nucleic acid residue or ‘X’ for
unknown amino acid residue). The nucleic acid codes supported are:

A --> adenosine M --> A C (amino)
C --> cytidine S --> G C (strong)
G --> guanine W --> A T (weak)
T --> thymidine B --> G T C
U --> uridine D --> G A T
R --> G A (purine) H --> A C T
Y --> T C (pyrimidine) V --> G C A
K --> G T (keto) N --> A G C T (any)

- gap of indeterminate length

Now you know the alphabet of nucleotide sequences. The last two lines of the following
example query show you such a sequence, which is obviously made up only of elements of the
alphabet just described. Store this example query into a file named ‘protbase.request’.
You are now ready to send it to the server with the demonstration client.

PROGRAM blastn
DATALIB month
EXPECT 0.75
BEGIN
>GAWK310 the gawking gene GNU AWK
tgcttggctgaggagccataggacgagagcttcctggtgaagtgtgtttcttgaaatcat
caccaccatggacagcaaa

The actual search request begins with the mandatory parameter ‘PROGRAM’ in the first
column followed by the value ‘blastn’ (the name of the program) for searching nucleic acids.
The next line contains the mandatory search parameter ‘DATALIB’ with the value ‘month’ for
the newest nucleic acid sequences. The third line contains an optional ‘EXPECT’ parameter
and the value desired for it. The fourth line contains the mandatory ‘BEGIN’ directive,
followed by the query sequence in FASTA/Pearson format. Each line of information must
be less than 80 characters in length.

The “month” database contains all new or revised sequences released in the last 30 days
and is useful for searching against new sequences. There are five different blast programs,
blastn being the one that compares a nucleotide query sequence against a nucleotide se-
quence database.

The last server directive that must appear in every request is the ‘BEGIN’ directive.
The query sequence should immediately follow the ‘BEGIN’ directive and must appear in
FASTA/Pearson format. A sequence in FASTA/Pearson format begins with a single-line
description. The description line, which is required, is distinguished from the lines of se-
quence data that follow it by having a greater-than (‘>’) symbol in the first column. For
the purposes of the BLAST server, the text of the description is arbitrary.

If you prefer to use a client written in gawk, just store the following 10 lines of code
into a file named ‘protbase.awk’ and use this client instead. Invoke it with ‘gawk -f

Chapter 3: Some Applications and Techniques 59

protbase.awk protbase.request’. Then wait a minute and watch the result coming in.
In order to replicate the demonstration client’s behaviour as closely as possible, this client
does not use a proxy server. We could also have extended the client program in Section 3.2
[Retrieving Web Pages], page 34, to implement the client request from ‘protbase.awk’ as
a special case.

{ request = request "\n" $0 }

END {
BLASTService = "/inet/tcp/0/www.ncbi.nlm.nih.gov/80"
printf "POST /cgi-bin/BLAST/nph-blast_report HTTP/1.0\n" |& BLASTService
printf "Content-Length: " length(request) "\n\n" |& BLASTService
printf request |& BLASTService
while ((BLASTService |& getline) > 0)

print $0
close(BLASTService)

}

The demonstration client from NCBI is 214 lines long (written in C) and it is not
immediately obvious what it does. Our client is so short that it is obvious what it does.
First it loops over all lines of the query and stores the whole query into a variable. Then
the script establishes an Internet connection to the NCBI server and transmits the query by
framing it with a proper HTTP request. Finally it receives and prints the complete result
coming from the server.

Now, let us look at the result. It begins with an HTTP header, which you can ignore.
Then there are some comments about the query having been filtered to avoid spuriously
high scores. After this, there is a reference to the paper that describes the software being
used for searching the data base. After a repitition of the original query’s description we
find the list of significant alignments:

Sequences producing significant alignments: (bits) Value

gb|AC021182.14|AC021182 Homo sapiens chromosome 7 clone RP11-733... 38 0.20
gb|AC021056.12|AC021056 Homo sapiens chromosome 3 clone RP11-115... 38 0.20
emb|AL160278.10|AL160278 Homo sapiens chromosome 9 clone RP11-57... 38 0.20
emb|AL391139.11|AL391139 Homo sapiens chromosome X clone RP11-35... 38 0.20
emb|AL365192.6|AL365192 Homo sapiens chromosome 6 clone RP3-421H... 38 0.20
emb|AL138812.9|AL138812 Homo sapiens chromosome 11 clone RP1-276... 38 0.20
gb|AC073881.3|AC073881 Homo sapiens chromosome 15 clone CTD-2169... 38 0.20

This means that the query sequence was found in seven human chromosomes. But the
value 0.20 (20%) means that the probability of an accidental match is rather high (20%) in
all cases and should be taken into account. You may wonder what the first column means.
It is a key to the specific database in which this occurence was found. The unique sequence
identifiers reported in the search results can be used as sequence retrieval keys via the NCBI
server. The syntax of sequence header lines used by the NCBI BLAST server depends on
the database from which each sequence was obtained. The table below lists the identifiers
for the databases from which the sequences were derived.
GenBank gb|accession|locus
EMBL Data Library emb|accession|locus
DDBJ, DNA Database of Japan dbj|accession|locus

60 TCP/IP Internetworking With gawk

NBRF PIR pir||entry
Protein Research Foundation prf||name
SWISS-PROT sp|accession|entry name
Brookhaven Protein Data Bank pdb|entry|chain
Kabat’s Sequences of Immuno. . . gnl|kabat|identifier
Patents pat|country|number
GenInfo Backbone Id bbs|number

For example, an identifier might be ‘gb|AC021182.14|AC021182’, where the ‘gb’ tag
indicates that the identifier refers to a GenBank sequence, ‘AC021182.14’ is its GenBank
ACCESSION, and ‘AC021182’ is the GenBank LOCUS. The identifier contains no spaces,
so that a space indicates the end of the identifier.

Let us continue in the result listing. Each of the seven alignments mentioned above is
subsequently described in detail. We will have a closer look at the first of them.

>gb|AC021182.14|AC021182 Homo sapiens chromosome 7 clone RP11-733N23, WORKING DRAFT SEQUENCE, 4
unordered pieces

Length = 176383

Score = 38.2 bits (19), Expect = 0.20
Identities = 19/19 (100%)
Strand = Plus / Plus

Query: 35 tggtgaagtgtgtttcttg 53
|||||||||||||||||||

Sbjct: 69786 tggtgaagtgtgtttcttg 69804

This alignment was located on the human chromosome 7. The fragment on which part
of the query was found had a total length of 176383. Only 19 of the nucleotides matched
and the matching sequence ran from character 35 to 53 in the query sequence and from
69786 to 69804 in the fragment on chromosome 7. If you are still reading at this point, you
are probably interested in finding out more about Computational Biology and you might
appreciate the following hints.
1. There is a book called Introduction to Computational Biology by Michael S. Waterman,

which is worth reading if you are seriously interested. You can find a good book review
on the Internet.

2. While Waterman’s book can explain to you the algorithms employed internally in the
database search engines, most practicioners prefer to approach the subject differently.
The applied side of Computational Biology is called Bioinformatics, and emphasizes
the tools available for day-to-day work as well as how to actually use them. One of the
very few affordable books on Bioinformatics is Developing Bioinformatics Computer
Skills.

3. The sequences gawk and gnuawk are in widespread use in the genetic material of
virtually every earthly living being. Let us take this as a clear indication that the
divine creator has intended gawk to prevail over other scripting languages such as
perl, tcl, or python which are not even proper sequences. (:-)

Chapter 4: Related Links 61

4 Related Links

This section lists the URLs for various items discussed in this chapter. They are pre-
sented in the order in which they appear.

Internet Programming with Python
http://www.fsbassociates.com/books/python.htm

Advanced Perl Programming
http://www.oreilly.com/catalog/advperl

Web Client Programming with Perl
http://www.oreilly.com/catalog/webclient

Richard Stevens’s home page and book
http://www.kohala.com/~rstevens

The SPAK home page
http://www.userfriendly.net/linux/RPM/contrib/libc6/i386/spak-0.6b-1.i386.html

Volume III of Internetworking with TCP/IP, by Comer and Stevens
http://www.cs.purdue.edu/homes/dec/tcpip3s.cont.html

XBM Graphics File Format
http://www.wotsit.org/download.asp?f=xbm

GNUPlot http://www.cs.dartmouth.edu/gnuplot_info.html

Mark Humphrys’ Eliza page
http://www.compapp.dcu.ie/~humphrys/eliza.html

Yahoo! Eliza Information
http://dir.yahoo.com/Recreation/Games/Computer_Games/Internet_
Games/Web_Games/Artificial_Intelligence

Java versions of Eliza
http://www.tjhsst.edu/Psych/ch1/eliza.html

Java versions of Eliza with source code
http://home.adelphia.net/~lifeisgood/eliza/eliza.htm

Eliza Programs with Explanations
http://chayden.net/chayden/eliza/Eliza.shtml

Loebner Contest
http://acm.org/~loebner/loebner-prize.htmlx

Tck/Tk Information
http://www.scriptics.com/

Intel 80x86 Processors
http://developer.intel.com/design/platform/embedpc/what_is.htm

AMD Elan Processors
http://www.amd.com/products/epd/processors/4.32bitcont/32bitcont/index.html

XINU http://willow.canberra.edu.au/~chrisc/xinu.html

62 TCP/IP Internetworking With gawk

GNU/Linux
http://uclinux.lineo.com/

Embedded PCs
http://dir.yahoo.com/Business_and_Economy/Business_to_
Business/Computers/Hardware/Embedded_Control/

MiniSQL http://www.hughes.com.au/library/

Market Share Surveys
http://www.netcraft.com/survey

Numerical Recipes in C: The Art of Scientific Computing
http://www.nr.com

VRML http://www.vrml.org

The VRML FAQ
http://www.vrml.org/technicalinfo/specifications/specifications.htm#FAQ

The UMBC Agent Web
http://www.cs.umbc.edu/agents

Apache Web Server
http://www.apache.org

National Center for Biotechnology Information (NCBI)
http://www.ncbi.nlm.nih.gov

Basic Local Alignment Search Tool (BLAST)
http://www.ncbi.nlm.nih.gov/BLAST/blast_overview.html

NCBI Home Page
http://www.ncbi.nlm.nih.gov

BLAST Pages
http://www.ncbi.nlm.nih.gov/BLAST

BLAST Demonstration Client
ftp://ncbi.nlm.nih.gov/blast/blasturl/

BLAST anonymous FTP location
ftp://ncbi.nlm.nih.gov/blast/network/netblast/

BLAST 2.0 Executables
ftp://ncbi.nlm.nih.gov/blast/executables/

IUB/IUPAC Amino Acid and Nucleic Acid Codes
http://www.uthscsa.edu/geninfo/blastmail.html#item6

FASTA/Pearson Format
http://www.ncbi.nlm.nih.gov/BLAST/fasta.html

Fasta/Pearson Sequence in Java
http://www.kazusa.or.jp/java/codon_table_java/

Book Review of Introduction to Computational Biology
http://www.acm.org/crossroads/xrds5-1/introcb.html

Chapter 4: Related Links 63

Developing Bioinformatics Computer Skills
http://www.oreilly.com/catalog/bioskills/

64 TCP/IP Internetworking With gawk

GNU Free Documentation License 65

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

66 TCP/IP Internetworking With gawk

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

GNU Free Documentation License 67

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

68 TCP/IP Internetworking With gawk

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

GNU Free Documentation License 69

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may

70 TCP/IP Internetworking With gawk

include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 71

Index

/
/inet/ files (gawk) . 7

/inet/raw special files (gawk) 11

/inet/tcp special files (gawk) 9

/inet/udp special files (gawk) 10

|
| (vertical bar), |& operator (I/O) 12

A
advanced features, network connections 13

agent . 31, 46

AI . 31

apache . 39, 47

B
Bioinformatics . 60

BLAST, Basic Local Alignment Search Tool . . . 57

blocking . 5

Boutell, Thomas . 40

C
CGI (Common Gateway Interface) 47

CGI (Common Gateway Interface), dynamic web
pages and . 18

CGI (Common Gateway Interface), library 22

clients . 5

Clinton, Bill . 30

Common Gateway Interface, See CGI 18

Computational Biology . 60

contest . 29

cron utility. 51

CSV format . 53

D
dark corner, RAW protocol 11

Dow Jones Industrial Index 52

E
ELIZA program . 26, 29

email . 16

F
FASTA/Pearson format . 58
filenames, for network access 7
files, /inet/ (gawk) . 7
files, /inet/raw (gawk) . 11
files, /inet/tcp (gawk) . 9
files, /inet/udp (gawk) . 10
finger utility . 15
FTP (File Transfer Protocol) 4

G
gawk, networking . 7
gawk, networking, connections 8, 12
gawk, networking, filenames . 7
gawk, networking, See Also email 16
gawk, networking, service, establishing 15
gawk, networking, troubleshooting 29
gawk, web and, See web service 19
getline command . 12
GETURL program . 34
GIF image format . 18, 40
GNU/Linux . 14, 35
GNUPlot utility . 22, 40

H
Hoare, C.A.R. 46, 57
hostname field . 8
HTML (Hypertext Markup Language) 17
HTTP (Hypertext Transfer Protocol) 4, 17
HTTP (Hypertext Transfer Protocol), record

separators and . 17
HTTP server, core logic . 19
Humphrys, Mark . 29
Hypertext Markup Language (HTML) 17
Hypertext Transfer Protocol, See HTTP 17

I
image format . 40
images, in web pages . 22
images, retrieving over networks 18
input/output, two-way, See Also gawk, networking

. 7
Internet, See networks . 15

J
JavaScript. 41

72 TCP/IP Internetworking With gawk

L
Linux . 14, 35

Lisp . 48

localport field . 7

Loebner, Hugh . 29

Loui, Ronald . 31

M
MAZE . 44

Microsoft Windows . 39

Microsoft Windows, networking 14

Microsoft Windows, networking, ports 15

MiniSQL . 37

MOBAGWHO program . 46

N
NCBI, National Center for Biotechnology

Information . 57

networks, gawk and . 7

networks, gawk and, connections 8, 12

networks, gawk and, filenames 7

networks, gawk and, See Also email 16

networks, gawk and, service, establishing 15

networks, gawk and, troubleshooting 29

networks, ports, reserved . 15

networks, ports, specifying . 8

networks, See Also web pages 33

Numerical Recipes . 40

O
ORS variable, HTTP and . 17

ORS variable, POP and . 17

P
PANIC program . 33

Perl. 7

Perl, gawk networking and . 7

Perlis, Alan . 44

pipes, networking and . 12

PNG image format . 18, 40

POP (Post Office Protocol) 16, 17

Post Office Protocol (POP) 16

PostScript . 43

PROLOG . 31

PROTBASE . 57

protocol field . 8

PS image format . 40

Python . 7

Python, gawk networking and 7

R
RAW protocol . 11

record separators, HTTP and 17

record separators, POP and 17

REMCONF program . 35

remoteport field . 7

robot . 31, 38

RS variable, HTTP and . 17

RS variable, POP and . 17

S
servers . 5, 15

servers, as hosts . 8

servers, HTTP . 19

servers, web . 26

Simple Mail Transfer Protocol (SMTP) 16

SMTP (Simple Mail Transfer Protocol) 4, 16

SPAK utility . 11

STATIST program . 40

STOXPRED program . 51

synchronous communications 5

T
Tcl/Tk . 7

Tcl/Tk, gawk and . 7, 33

TCP (Transmission Control Protocol) 7, 9

TCP (Transmission Control Protocol), connection,
establishing . 12

TCP (Transmission Control Protocol), UDP and
. 15

TCP/IP, protocols, selecting 8

TCP/IP, sockets and . 7

Transmission Control Protocol, See TCP 7

troubleshooting, gawk, networks 29

troubleshooting, networks, connections 13

troubleshooting, networks, timeouts 29

U
UDP (User Datagram Protocol) 10

UDP (User Datagram Protocol), TCP and 15

Unix, network ports and . 15

URLCHK program . 37

User Datagram Protocol, See UDP 10

V
vertical bar (|), |& operator (I/O) 12

VRML . 44

Index 73

W
web browsers, See web service 19
web pages . 17
web pages, images in . 22
web pages, retrieving . 34
web servers . 26
web service . 18, 33
WEBGRAB program . 38
Weizenbaum, Joseph . 26

X

XBM image format . 22

Y

Yahoo! . 35, 51

74 TCP/IP Internetworking With gawk

